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A model with several original physical and numerical features has been developed
for direct numerical and large eddy simulations of a turbulent boundary layer in a
stratified fluid. The large scale flow for which the model was developed involves in-
ternal waves reflecting from a sloping boundary. In the model, the internal waves are
generated by a new technique that forces monochromatic waves at specified wave-
lengths and frequencies. A new analytic solution has been obtained representative
of the forcing conditions. In the model, time discretization is based upon the pro-
jection method incorporating a third-order Adams–Bashforth scheme with variable
time steps, and spatial discretization employs fourth-order compact differencing tech-
niques on a variable grid that increases resolution close to the boundary. The model
is periodic in two dimensions and in the third dimension employs an open boundary
and a solid sloping surface. The pressure field is determined using a fast direct so-
lution method of fourth-order accuracy. The model includes flow analysis aids such
as tracking Lagrangian particles and advected scalar quantities. Flow measurements
are made of the integrated kinetic and potential energy balances, local dissipation
rates, and the energy spectra. The utility of the model is examined in a number of
test problems. It appears that the model is well suited for simulations of transitioning
and turbulent boundary layers.c© 1998 Academic Press

1. INTRODUCTION

A number of important fluid flows involve turbulent boundary layers. Such boundary
layers are among the most difficult types of flows to compute because they contain a wide
range of spatial and temporal scales. Spalartet al. (1991) were first to develop a Navier–
Stokes solver for the direct numerical simulation (DNS) of a turbulent boundary layer. Their
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model employed a semi-infinite, doubly periodic domain utilizing spectral basis functions
to examine the dynamics of a constant density fluid. Rai and Moin (1993) simulated a
spatially evolving boundary layer over a flat plate using a finite difference scheme. In this
paper we describe a model for the direct numerical simulation of transitioning and turbulent
boundary layers in a stratified (i.e., variable density) incompressible fluid.

Our model was designed to study the problem of internal wave reflection from sloping
boundaries. When an internal gravity wave reflects from a sloping boundary, the wave’s
energy density and amplitude may increase significantly, especially if the angle of prop-
agation of the wave is close to the angle of the bottom slope. The reflection can result in
wave breakdown into a turbulent layer near the boundary, a process thought to make a large
contribution to vertical mixing in the ocean (Eriksen, 1998). To model this process, we have
developed a new method for generating a monochromatic oncoming train of internal gravity
waves of specified wavelength and frequency. Also, an analytic solution is developed for the
wave forcing mechanism that predicts properties of the resulting forced wave. We present
results from experiments of internal wave reflection from sloping boundaries in which flow
near the the boundary transitions to turbulence.

Several recent advances in numerical techniques are incorporated into the model, which
solves the three-dimensional Navier–Stokes equations for a stratified flow subject to the
Boussinesq approximation. High resolution is achieved in the near-wall region by utilizing
a variable or clustered grid in physical space, with an increasing density of computational
points near the boundary. The variable grid is mapped onto a uniform grid in computational
space by an analytic function. The spatial discretization in the model uses compact finite-
differencing techniques (Lele, 1992), which have near-spectral accuracy in their ability
to resolve a wide range of wavenumbers. This is especially important in accurately treat-
ing wave propagation. The time discretization scheme incorporates the pressure projection
method (e.g., Karniadakiset al., 1991) with a third-order Adams–Bashforth time-stepping
scheme that recalculates a stable time step during the time integration in order to achieve op-
timum use of computational resources. The model has periodic boundary conditions in two
directions and employs an open boundary condition at the top boundary and a solid surface
at the bottom boundary. A fast direct pressure solution method has been implemented, which
takes advantage of the periodicity of the problem. The code has been optimized for vector and
parallel processor computers and is used with grid resolutions of approximately 1283 grid
points.

The basic mathematical model and the model problem to be studied are described in
Section 2, and the numerical methods are described in detail in Section 3. Section 4 presents
simulation results from a number of test problems, and Section 5 contains the summary and
conclusions.

2. INCOMPRESSIBLE STRATIFIED FLOW MODEL

Considering forced, dissipative, incompressible flow within the Boussinesq approxima-
tion (Phillips, 1977), the conservation equations for mass, momentum, and internal energy
(or, salinity for a liquid) are, respectively,

∇̃ · ũ = 0, (2.1)

∂ũ
∂ t̃

+ ũ · ∇̃ũ = −∇̃ p̃

ρo
− k̂

g

ρo
ρ̃ + ν∇̃2ũ + F̃u, (2.2)
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∂ρ̃

∂ t̃
+ ũ · ∇̃ρ̃ + ω̃

dρ̄

dz̃
= κ∇̃2ρ̃ + F̃ρ. (2.3)

Equations (2.1)–(2.3) are five equations for the five unknownsũ = (ũ, ṽ, w̃), p̃, and
ρ̃, where the ˜ represents a dimensional quantity. Hereũ is the fluid velocity,g is the
gravitational acceleration,̃p is the perturbation pressure field,x̃ = (x̃, ỹ, z̃) is the Cartesian
coordinate system with unit vectorî = (î , ĵ , k̂) (wherez̃ is in the vertical direction, ˜ρ is the
fluctuating density field,ρo is the constant background density, anddρ̄

dz̃ is the background
density stratification (assumed here to be constant), which will be negative in all cases
considered in this work (i.e., density increasing with depth in the ocean or decreasing with
height in the atmosphere.) A body forceF̃u = (F̃u, F̃v, F̃w) is applied to the momentum
equation, and the density field is forced withF̃ρ . The parametersν andκ are coefficients
of diffusion of momentum and density.

Density fluctuations and stratification are considered small compared withρo in the
Boussinesq approximation. The total density and pressure fields may be written

ρ̃ t = ρo + dρ̄

dz̃
z̃ + ρ̃, (2.4)

p̃t = po + p̃. (2.5)

Here,po is a reference state in hydrostatic balance with the background density field in the
Boussinesq approximation, e.g.,

dpo

dz̃
= −ρo g z̃. (2.6)

In the Boussinesq approximation|−ρo g z̃| À | dρ̄

dz̃ z̃ gz̃|, so hydrostatic balance is only bet-
ween pressure and the background density field to the order of the approximation. The
hydrostatic balance has already been removed from (2.2), which is written in terms of
pressure and density fluctuations.

The governing equations may be nondimensionalized as

u = ũ
U

, x = x̃
L

, t = t̃

L/U
, p = p̃

ρoU2
, ρ = ρ̃

L|dρ̄/dz̃| ,

Fu = F̃u

U2/L
, Fρ = F̃ρ

U |dρ̄/dz̃| . (2.7a–2.7g)

HereU is the characteristic velocity,L is a characteristic (vertical) length scale, pressure is
nondimensionalized with the dynamic pressure, and density is nondimensionalized using
the background density gradient. With (2.7), the momentum equation, (2.2), becomes

∂u
∂t

+ u · ∇u = −∇ p − k̂ Riρ + 1

Re
∇2u + Fu. (2.8)

The nondimensional parameters (the Froude, Richardson, Reynolds, Prandtl, and Peclet
numbers) are

Fr = U

NL
, Ri =

(
NL

U

)2

, Re= U L

ν
, Pr = ν

κ
, Pe= Re Pr,

(2.9a–2.9e)
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where the buoyancy frequency,N, is defined by

N2 =
(−g

ρo

dρ̄

dz̃

)
. (2.10)

Using (2.7) in (2.1) gives

∇ · u = 0. (2.11)

The governing equation, (2.3), for the density field becomes

∂ρ

∂t
+ u · ∇ρ − w = 1

Pe
∇2ρ + Fρ. (2.12)

2.1. Problem Geometry

The model problem is taken to be periodic in thex- andy-directions and bounded by a
plane wall at the bottom boundary. To accommodate a sloping ocean floor, it is advantageous
to rotate the coordinate system about they axis by the angle of the slope,α, so that thex
axis is directed upslope,y is across-slope, andz is perpendicular to the slope (Fig. 1). This
rotation complicates some other aspects of the problem. For example, thex component of
the momentum equation has a component of the gravity force, and the density equation
has the velocity componentu (in addition tow) multiplying the mean density gradient.
The background density and pressure fields are not periodic at the lateral boundaries inx.
Because the background fields have been subtracted from the governing equations, however,
if the remaining perturbation density and pressure fields are initially periodic in thex
direction, they will remain so.

FIG. 1. The computational domain and suggestions of some of the key numerical methods utilized in the
model.
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Hereinafter, for convenience,xT andzT will be used to designate the true horizontal and
vertical directions, perpendicular and parallel to gravity. Thus, the governing equations,
(2.8), (2.11), and (2.12), for a coordinate system rotated through angleα are

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (2.13)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ Riρ sinα = −∂p

∂x
+ 1

Re

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
+ Fu,

(2.14)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ 1

Re

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
+ Fv, (2.15)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+ Riρ cosα = −∂p

∂z
+ 1

Re

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
+ Fw,

(2.16)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
− w cosα − u sinα = 1

Pr Re

(
∂2ρ

∂x2
+ ∂2ρ

∂y2
+ ∂2ρ

∂z2

)
+ Fρ.

(2.17)

2.2. Initial Conditions

The reflection of internal waves from the ocean floor can be modeled numerically either by
solving an initial value problem of a downward propagating wave packet (examined in this
section), or by creating continuous wave source in the computational domain (Subsection
2.3). The initial conditions consist of combinations of three distinct parts: a wave packet,
laminar boundary currents, and a background flow consisting of white noise or low level
turbulence. Gravity waves may be initialized by specifying the wave as a perturbed density
field, together with the instantaneous velocities associated with the wave.

The initial value problem in which the flow field is set to represent a wave packet propa-
gating downward at angleθ with respect to the horizontal, with group velocityECg and
wavenumberk = (k, l , m), is presented here following Winters (1989). The analytic ex-
pression for a wave packet localized inz is determined by seeking a sinusoidal solution to
the linearized non-diffusive governing equations.

u(x, y, z, 0) = − Am

k
F(z) cos(kx + mz) − A

k
F ′(z) sin(kx + mz), (2.18)

v(x, y, z, 0) = 0 (2.19)

w(x, y, z, 0) = AF(z) cos(kx + mz), (2.20)

ρ(x, y, z, 0) = −AcosαF(z)

ω
sin(kx + mz) + AmsinαF(z)

ωk
sin(kx + mz)

− AsinαF ′(z)
ωk

cos(kx + mz). (2.21)

The functionF(z) with derivativeF ′(z) has been suggested by Winters (1989) in order to
localize the wave packet in the computational domain

F(z) = exp[−b(z − z0)
2], 0 ≤ z ≤ Lz, (2.22)
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where the(x, y, z) dimensions of the domain are(Lx, L y, Lz). The termF ′(z) ensures the
non-divergence of the wave packet. To minimize dispersive effects the vertical extent of
the wave packet should be somewhat longer than the vertical wavelengthλz = 2π/m of the
gravity waves. Typical parameters used in the model initialization are

z0 = Lz

2
, A = w̃

U
= 0.015, b = 30

L2
z

, k = 2π

λx
= 2π

3
,

l = 0, m = 2π

λz
= 2π. (2.23a–2.23f)

The dispersion relation of the wave packet is given by

ω2 = Ri(k cosα − msinα)2

k2 + m2
. (2.24)

The phase and group velocities are perpendicular (Phillips, 1977), and their magnitudes are
related by| ECg| = | ECph|m/k where

ECph =
√

Ri(k cosα − msinα)

(k2 + m2)3/2
(kî + mk̂), (2.25)

ECg =
√

Ri(mcosα + k sinα)

(k2 + m2)3/2
(mî − kk̂). (2.26)

The wave and buoyancy periods are, respectively,

Tw = 2π√
Risinθ

, (2.27)

TB = 2π√
Ri

. (2.28)

A wave with group velocity propagating downward and in the positivex andy directions
at angleθ to the horizontal has wave numbers defined fromθ = tan−1(m/k) − α. In the
flat bottom case(α = 0) positive values fork andm yield a wave packet that propagates in
the positivex and negativez directions. This is not generally the case for arbitrary angleα.
For instance, whenk cosα − m sin α < 0, positive wavenumbers can lead to a wave packet
propagating in the negativex direction.

Constant density contours of a large amplitude initial wave packet with peak amplitude
3A0

4 , whereA0 is the amplitude of an overturning wave, are shown in Fig. 2. The direction
of propagation of the phase and group velocities are indicated on the figure. Note that even
though the waves in this packet are of somewhat large amplitude they are not near the point
of incipient breaking (amplitudeA0, where∂ρt/∂zT = 0 at the steepest point).

2.3. Mechanical Wave Forcing

A second method to generate incoming waves is to force them continuously from inside
the computational domain during the simulation. This is accomplished by utilizing the
forcing terms on the right hand sides of the governing equations. A simplified variation
of this method was introduced byFovell et al. (1992). In our model both the velocity and
density fields are locally forced in a manner that generates a monochromatic wave train with
specified frequency and wavenumber vector incident upon the sloping terrain. This method
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FIG. 2. For the initial value problem, density contours are shown of the initial wave packet with amplitude
0.75A0, 3/4 the amplitude of an overturning wave.

offers several advantages over the wave packet approach, such as allowing a longer time
for the waves to break down and providing close comparison with laboratory experiments.
Additional flexibility with the wave source may be gained by using a time dependent forcing
amplitudeA(t) without modification.

The forcing functions in the rotated coordinate system are specified using similar relations
to those used for the wave packet, e.g.,

Fu = − Am

k
F(z) cos(kx + mz− ωt) − A

k
F ′(z) sin(kx + mz− ωt), (2.29)

Fv = 0 (2.30)

Fw = AF(z) cos(kx + mz− ωt), (2.31)

Fρ = −AcosαF(z)

ω
sin(kx + mz− ωt) + AmsinαF(z)

ωk
sin(kx + mz− ωt)

− AsinαF ′(z)
ωk

cos(kx + mz− ωt), (2.32)

where the localization functionF(z) is given by (2.22), but is more strongly localized
(larger b) and centered atz0 = 2Lz/3. Experience indicates that choosing the vertical extent
of F(z) equal to the vertical wavelength of the desired monochromatic wave train yields
satisfactory results (Subsection 2.3.1).

The internal wave train is started from rest, and after a short startup period, a quasi-steady
flow develops in which a beam of sinusoidal internal waves propagate toward the bottom
boundary. Figure 3 shows isopycnals of the waves emerging from the region of wave forcing,
waves that have grown in amplitude due to interactions with the sloping bottom boundary,
and wave breakdown beginning to occur.

The forcing functionsFu andFw may be written in terms analogous to a stream function,
e.g.,

Fu = −∂9

∂z
, Fw = ∂9

∂x
, (2.33a–2.33b)
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FIG. 3. Steady wave forcing showing constant density surfaces of an internal wave propagating downward
toward the bottom boundary from the forcing region.

which will be mathematically convenient in the next section. The stream function9 is

9 = A(t)F(z)

k
sin(kx + mz− ωt). (2.34)

2.3.1.Analytic Solution. An analytic solution can be obtained for the wave train that
propagates from the forcing region, obtained by writing the linearized equations of motion
with forcing added and searching for solutions whose time dependence is wavelike. We
analyze the case withα = 0 for simplicity and begin with the linearized system

∂u

∂t
= −∂p

∂x
− ∂9

∂z
, (2.35)

∂w

∂t
= −Riρ − ∂p

∂z
+ ∂9

∂x
. (2.36)

∂ρ

∂t
= w + Fρ. (2.37)

Pressure may be eliminated from the system using a stream function, withu = ∂ψ

∂z and
w = − ∂ψ

∂x . Taking the curl of the linearized momentum equations and adding them yields

∂

∂t
∇2ψ − Ri

∂ρ

∂x
= −∇29. (2.38)

Density may be eliminated from (2.38) using (2.37) which gives

∂2

∂t2
∇2ψ + Ri

∂2ψ

∂x2
= − ∂

∂t
∇29 + Ri

∂Fρ

∂x
. (2.39)
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Here9 andFρ are specified by (2.34) and (2.33), withA(t) = A, a constant; therefore, the
right hand side of (2.39) is

− Aω

k
[2(k2 + m2)F(z) − F ′′(z) cosφ + 2mF′(z) sinφ], (2.40)

whereφ = (kx + mz− wt).
A solution to the system may be found of the form

ψ = Af (z) cosφ + Bf (z) sinφ, (2.41)

for which the entire time dependence of the solution is contained in the wave forms of sinφ

and cosφ. Substitutingψ into (2.40) and equating the sine and cosine parts leads to the
following third-order equations forAf (z) andBf (z)

B′′′
f (z) + 4m2B′

f (z) = 4Am

ωk
(k2 + m2)F(z) = C1F(z) (2.42)

A′′′
f (z) + 4m2A′

f (z) = − A

ωk
F ′′′(z) + 2A(k2 − m2)

ωk
F ′(z) = C2F ′′′(z) + C3F ′(z).

(2.43)

For certain specified forms ofF(z) on the interval 0< z< π , such asF(z) = sin2(z),
analytic expressions forA f (z) andBf (z) can be found. For example, forF(z) = sin2(z),
the analytic solution is given in Appendix A. For the form ofF(z) used above, however,
a numerical solution of the third-order ordinary differential equations (2.42) and (2.43) is
obtained by inverting a pentadiagonal matrix representing a finite difference discretization
for the derivatives ofAf (z) andBf (z). The relative magnitudes ofC1, C2, andC3 to 4m2

are the important parameters that determine the shape of the solutions forAf (z) andBf (z).
The numerical solution is approximated at the interior nodes with fourth and second order

accurate stencils for the derivatives, e.g.,

B′
f (z) = −Bi +2 + 8Bi +1 − 8Bi −1 + Bi −2

121z
, (2.44)

B′′′
f (z) = Bi +2 − 2Bi +1 + 2Bi −1 − Bi −2

21z3
. (2.45)

Three boundary conditions onBf (z) are used, assuming thez-component of the wave group
velocity is negative: asz → ∞, Bf = 0 andB′

f = 0, and asz → −∞, B′
f = 0. The same

boundary conditions are used forAf (z). An alternate solution method has also been used,
yielding equivalent results, by solving Eq. (2.43) forB′

f (z), using the method of variation
of parameters, and numerically integrating both the right hand side of the equation andB′

f

to find Bf .
Figure 4 shows solutions forAf (z) andBf (z) for the shape function of the forcing region,

F(z), indicated. Herem (the vertical wavenumber) is chosen so thatλz = 2π/m is smaller
(λz ≈ L F/1.6) than the characteristic length scale ofF(z), defined byL F , which is the width
of F(z) at F(z) = Fmax/10. The solutions indicate that the signal coming out of the forcing
region,Bf sinφ, is steady and smooth and confined within the carrier wave envelopeBf

shown. The envelope’s smoothness is a function of the ratio of2π
m /L F . When this ratio is
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FIG. 4. Signal shape function forAf (z) and Bf (z) for a broad forcing region(L F = 1.6λz) of shapeF(z)
and wavelengthλz = 0.7.

greater than one, such that the forcing region is wider than a vertical wavelength of the forced
wave, then the signal that emerges has the desirable features of being uniform in shape and
time. When the forcing region is narrower than a wavelength of the emitted signal, then
the output is modulated by an irregular, non-constant envelope. In Fig. 4 the emitted signal
propagates from right to left (downward).Bf (z) represents the shape of the internal wave
train emerging from the forcing region having the sineφ dependence.Af (z) represents
a local disturbance with cosineφ dependence within the forcing region, which satisfies
the non-divergence criteria required by incompressible flow.Af (z) vanishes outside of the
forcing region due to the symmetry ofF(z) when the forcing region is sufficiently broad.

Figures 5 and 6 show solutions for relatively broad and narrow forcing regions defined
by ratios of2π

m /L f of 1.05 and 0.73. The envelope and signal wavelength are shown here
in comparison with the forcing region width. Figure 5 shows a satisfactorily smooth signal
coming from a broad forcing region, and Fig. 6 shows the modulated signal and envelope
coming from a narrower forcing region. These analytic results have been tested by numerical
simulations that verify the influence and importance of the width of the wave forcing region
compared to the vertical wavelength. The main result is that, for satisfactory resolution (so
that an unmodulated wave is produced), the forcing region should be wider than a vertical
wavelength of the emitted wave.

FIG. 5. A marginally broad forcing region, approximately the same width as the vertical wavelength of the
emitted wave(L F = 1.05λz), has fairly smooth properties for the shape functionBf (z). Also shown is the forcing
region,F(z), with height normalized to be of the same scale asBf .
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FIG. 6. A narrow forcing region, smaller in width than the vertical wavelength of the emitted sine wave
(L F = 0.73λz), leads to oscillations in the shape functionBf (z). Also shown is the forcing region,F(z), with
height normalized to be of the same scale asBf .

2.4. White Noise and Turbulence

The wave packet and wave train described above are two-dimensional (i.e., the oncoming
wave approaches the wall in the plane of the slope). In this case additional flow features
are required to break the symmetry of the problem and allow the reflected waves to break
down three-dimensionally. To accomplish this a small amount of white noise is added to
the background flow. Experience has shown that a background noise level that contains
roughly one percent of the local energy density of the oncoming wave train is sufficient to
allow wave instabilities to develop quickly and cause the waves to break into turbulence.

This white noise is generated by taking the incompressible projection of a pseudo-random
velocity field localized near the wall. The density field is also initialized with random fluc-
tuations added to the background profile. These perturbation velocity and density fields
are filtered to remove energy at high wave numbers and then set in motion for about one
buoyancy period. This allows the noise field to begin to develop into low level turbulence
containing some coherence. After a short developmental period a wave packet is superim-
posed on the background noise field, or the wave forcing is initiated, and the waves begin
to propagate toward the wall.

2.5. Boundary Conditions

A periodic domain inx and y, consistent with the periodicity of the oncoming wave,
is chosen to simplify boundary conditions at the lateral boundaries. The lateral (periodic)
boundary conditions are

(u, v, w, p, ρ)(x, y, z, t) = (u, v, w, p, ρ)(x + Lx, y, z, t), (2.46a)–(2.46e)

(u, v, w, p, ρ)(x, y, z, t) = (u, v, w, p, ρ)(x, y + L y, z, t). (2.47a)–(2.47e)

No slip boundary conditions are specified at the bottom boundary(z= 0) with

u(x, y, 0, t) = 0, v(x, y, 0, t) = 0, w(x, y, 0, t) = 0. (2.48a)–(2.48c)

The bottom boundary condition for density is a no-flux condition, equivalent, in a tempera-
ture stratified fluid, to an adiabatic boundary condition. In a salt stratified fluid the no-flux



            

SIMULATION OF TURBULENT BOUNDARY LAYERS 561

FIG. 7. Isopycnals near a sloping boundary with an adiabatic boundary condition showing secondary currents
generated for a constant interior stratification.

boundary condition means that there are no sources or sinks of salt at the wall, so that the
salt in the interior flow is conserved. A no-flux wall may be simulated with the condition

∂ρt

∂z

∣∣∣∣
b

= 0, (2.49)

where, with the nondimensionalization specified above,ρt = ρo − z cosα − x sin α +ρ is
the total density field. In practice (2.49) is written in terms of the normal derivative of the
perturbation density

∂ρ

∂z

∣∣∣∣
b

= cosα, (2.50)

a constant.
Phillips (1970) and Wunsch (1970) have shown that a no-flux boundary condition can give

rise to a steady circulation in a density stratified fluid in which mass diffusion is balanced
by upslope convection near the boundary. Figure 7 shows the total density contours in the
near-wall region for the steady flow, and Fig. 8 illustrates the velocity profile. For typical
experiments conducted in this study, with intermediate bottom slopes (e.g., 5◦ < α < 30◦)
and moderate Reynolds numbers(Re' 1000), the steady profiles develop on time scales
fast compared with wave propagation time scales. Consequently, the flow is initialized to
include the fully developed steady laminar profiles, as given by

ρ(z) = −cosαe−γ z cosγ z

γ
, (2.51)

FIG. 8. Alongslope velocity profiles to maintain steady-state buoyancy boundary currents.
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u(z) = 2γ cotαe−γ z sinγ z

Pr Re
, (2.52)

w(z) = v(z) = 0, (2.53)

whereγ = (Ri Pr Re2 sin2 α/4)1/4.
The upper boundary condition is chosen to be a radiative boundary condition, allowing

waves to freely propagate out of the computational domain. Its presentation is deferred
to Subsection 3.4 (dealing with numerical boundary conditions). This upper boundary
condition is implemented using Rayleigh damping in the top region of the domain.

2.6. Model Summary

Experience with numerical simulation has shown the advisability of solving implicitly
for the pressure field, to allow it to adjust instantaneously to the velocity field in such a
manner as to ensure incompressible flow. This approximation of infinitely fast pressure
waves is warranted for low Mach number (incompressible) flows, since pressure waves
propagate much faster (acoustic speeds) than other adjustments (gravity waves, turbulence)
in the flow. The governing equation for the pressure is a Poisson equation. It may be derived
by taking the divergence of the momentum equation (2.8), summing the components, and
using the continuity equation to simplify. The pressure projection method is used to treat
the pressure field and is detailed below in Subsection 3.3.

For the three-dimensional model, the system to be solved numerically comprises
Eqs. (2.13)–(2.17) with the appropriate pressure equation to be presented below, together
with an appropriate set of boundary conditions from (2.46)–(2.50), upper boundary condi-
tions to be presented later, and initial conditions from (2.18)–(2.21) and (2.51)–(2.53), or a
mechanical wave source as given by (2.29)–(2.32).

3. NUMERICAL METHODS

Two numerical codes have been developed in this study, for two-dimensional (2-D)
and three-dimensional (3-D) flows. Numerical methods used in these codes are outlined
below, primarily in the context of the three-dimensional model. Except where noted, the
two-dimensional model uses the same algorithms. The standard resolution for the two-
dimensional model is 201× 401 grid points; the three-dimensional model uses grid resolu-
tions of up to 129× 129× 130 grid points.

The model uses a single spatial grid at which all of the variables (u, v, w, p, andρ) and
their spatial derivatives are determined as recommended by Shihet al. (1989) using the
fourth-order compact scheme. The nonlinear terms are calculated in advective form, e.g.,
u ∂u

∂x . The model conserves mass, momentum, and energy to a high degree of accuracy. The
time marching technique employs an explicit fractional step method in which the pressure
terms are treated separately. Significant model features include a variable time stepping
procedure, a variable grid with increased resolution in the boundary layer, an open upper
boundary condition, a direct pressure solver, and a number of flow measurement techniques.

3.1. Spatial Discretization

Velocity and pressure derivatives are calculated using Hermitian compact (or Pad´e) tech-
niques, following the work of Hirsh (1975), Adam (1977), and Lele (1992). These methods
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offer improved resolution over traditional finite-difference schemes, and spectral-like be-
havior in their ability to represent a wide range of wavenumbers accurately. In addition,
the compact scheme has minimal phase errors, an important property for wave propagation
problems, and may be used in other applications such as spectral-like filtering (Lele, 1992).

The Pad´e representation of the first derivative results in a tridiagonal system of the form

1

3
ux(i +1) + 4

3
uxi + 1

3
ux(i −1) = 1

h
(ui +1 − ui −1), (3.1)

where h is the distance between grid points, and the velocity derivatives are written
∂u/∂x|i ≡ uxi . The scheme is called “compact” because it involves relations between grid
points on a smaller stencil than the standard finite difference formula. The truncation error
for the compact scheme,−h4 ∂5u

∂x5 |i /180, is one sixth the truncation error of the standard
Taylor series scheme.

Formal fourth-order accuracy is maintained throughout the numerical model. Second-
derivatives are calculated using the compact representation

1

12
uxx(i +1) + 5

6
uxxi + 1

12
uxx(i −1) = 1

h2
(ui +1 − 2ui + ui −1), (3.2)

where∂2u/∂x2|i ≡ uxxi. The boundary nodes for first- and second-derivatives require spe-
cial treatment and will be described below.

It is well known that boundary schemes may be one order less accurate than an interior do-
main scheme without degrading the overall accuracy of the interior difference scheme (e.g.,
Kreiss, 1972). Third-order accurate boundary schemes for Dirichlet boundary conditions
(u is specified at the boundary) are suggested by Adam (1977),

2ux1 + 4ux2 = 1

h
(−5u1 + 4u2 + u3), (3.3)

4ux2 + 2ux3 = 1

h
(−u1 − 4u2 + 5u3), (3.4)

2ux(m−2) + 4ux(m−1) = 1

h
(−5um−2 + 4um−1 + um), (3.5)

4ux(m−1) + 2uxm = 1

h
(−um−2 − 4um−1 + 5um), (3.6)

where i = m represents the last (maximum) grid point. The resulting tridiagonal matrix
is computationally inexpensive to solve. When von Neumann boundary conditions are
specified (the normal derivative∂u/∂n is given on the boundary) the tridiagonal matrix
is simplified, with all off diagonal elements equated to zero at the boundary by setting
ux1 = ∂u/∂n.

For the second derivative Lele (1992) suggests a third-order boundary condition compati-
ble with the compact scheme for Dirichlet boundary conditions,

uxx1 + 11uxx2 = 1

h2
[13u1 − 27u2 + 15u3 − u4]. (3.7)

We have derived a third-order accurate von Neumann boundary condition for use with the
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compact second derivative

29uxx1 + 85uxx2 = −78

h
ux1 + 1

h2
[−81u2 + 84u3 − 3u4]. (3.8)

The case of periodic boundary conditions is the simplest to implement numerically. The
formulation maintains fourth-order spatial accuracy throughout. The resulting tri-diagonal
matrix is not simply banded but includes two extra off-diagonal coefficients, one each in the
upper-right and lower-left corners of the left-hand-side coefficient array. These additional
coefficients do not present additional difficulties to inverting the matrix. Standard modifi-
cations for the Thomas (1949) tri-diagonal inversion algorithm are commonly available for
the periodic case. The periodic boundaries are implemented in the model using a redundant
grid point, e.g.,u1 = um.

3.2. Spatial Filtering

Spatial filtering is included as a feature of the model for two potential uses. First, the
filter acts to partially de-alias the calculation, i.e., remove spurious accumulations of energy
from the smallest scales of motion (Canutoet al., 1988, p. 118). When the filter is limited
to this use the calculations can be considered as direct numerical simulations (DNS) of the
flows. The second use of the filter, employed occasionally here, is as a simple subgrid-scale
model. When used as a subgrid-scale model the filter is similar in principle to a hyper-
viscosity, (e.g.,γ∇4u) that increases dissipation at smaller scales (higher wavenumbers).
Hyperviscosity techniques are frequently used in simulations of geophysical flows (e.g.,
Winters, 1989; Lesieur, 1987). When the filter is used in this fashion the calculations are
large-eddy simulations (LES).

In the gravity-wave reflection flow being studied, the main interactions that occur are at
large scales and can be resolved. Both DNS and LES are used to investigate the flows over
a large range of Reynolds numbers. For the cases with higher Reynolds number, using the
large-eddy simulations, attention is focused on the large scales of motions and on the manner
in which energy is transferred to the intermediate-scale motions; phenomena at the smaller,
dissipative scales are parameterized. For these cases the model damps out interactions that
occur on scales too small to be resolved on the numerical mesh. Two types of filtering
techniques, the explicit and compact methods, are described below.

To enhance the performance of the finite difference method, a small amount of fourth-
order spatial smoothing may be added to the right-hand sides of (2.13)–(2.17) to decrease
aliasing errors without decreasing the formal accuracy of the scheme. Aliasing errors appear
in finite-difference schemes mainly as the buildup of spurious amplitudes at the wavelengths
corresponding to the smaller resolvable grid scales. In nonlinear equations, aliasing errors
are related to the cascade of energy towards unresolvable scales, finer than the computational
mesh. A one-dimensional fourth-order filter is of the form

ǔi = ui − γ4(ui +2 − 4ui +1 + 6ui − 4ui −1 + ui −2), (3.9)

whereǔi represents a filtered value ofui , andγ4 represents the strength of the filter. The
filter is applied after the first half of the fractional time step (details below). The maximum
stable value ofγ4 is 1/16. For the boundary nodes, a boundary condition is known (e.g.,
no-slip) and no filter is used.
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The filter in (3.9) is a second-order finite difference representation of the term
γ4(1x)4(∂4u/∂x4), which has a dissipative effect onu and smoothes the solution. The
leading order truncation-error term resulting from taking derivatives with the compact
scheme is of the formO(1x)4(∂5u/∂x5), which has dispersive effects on the solution. The
fourth-order filter preserves the global fourth-order truncation error of the compact scheme.
The addition of artificial diffusion by filtering helps the system maintain a smooth solution
and does not degrade the overall fourth-order accuracy of the difference equations. Thus,
filtering may alternatively be thought of simply as a desirable modification of the truncation
errors. It is more common, however, to consider the addition of spatial filtering to the true
viscous diffusion terms to be like a hyperviscosity, which is scale dependent, more strongly
damping the small scale fluctuations.

It is advantageous to use the properties of the compact scheme to improve accuracy and
scale selectivity of the spatial filter. Lele (1992) presents families of fourth- and sixth-order
filters. He demonstrates compact filtering to be superior to explicit filtering for damping
the shortest waves. In many formulations fourth-order compact filters confine their effects
to higher wavenumbers than do sixth-order explicit filters. Explicit and compact filters of
various order are compared in Fig. 9.

In the numerical model a fourth-order compact filter is used. The scheme requires solution
of another tridiagonal matrix. Lele’s Eq. (C.2.1),

α1ǔi −1 + ǔi + α1ǔi +1 = a1ui + b1

2
(ui +1 + ui −1) + c1

2
(ui +2 + ui −2) + d1

2
(ui +3 + ui −3),

(3.10)

represents the filtering process. The filter is represented by the transfer function,Tc(ωc),
satisfyingǔ j = Tc(ωc)u j , with Fourier component wave solutions

u j = û ei ωc j , ωc = k1x. (3.11a)–(3.11b)

The transfer function (as shown in Fig. 9) for (3.10) is

Tc(ωc) = a1 + b1 cos(ωc) + c1 cos(2ωc) + d1 cos(3ωc)

1 + 2α1 cos(ωc)
. (3.12)

FIG. 9. Comparison of explicit and compact filters is shown as a function of wavenumber. Second-fourth- and
sixth-order explicit filters remove more energy at lower wavenumbers than the two fourth-order compact filters
(A and B) described in the text.
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A family of fourth-order tridiagonal schemes is found when the constraintsTc(π) = 0,
and(dTc/dωc) (π)= 0 are imposed. The coefficients for fourth-order accuracy are

a1 = 1

8
(5 + 6α1 + 16d1), b1 = 1

2
(1 + 2α1 − 2d1),

c1 = −1

8
(1 − 2α1 + 16d1). (3.13)

Wave reflection experiments were conducted using two different filter functions and the
results were found to be approximately independent of the filter parameters. From inspection
of various filters satisfying (3.13), the two that were utilized confine most of their effects
below the 41x wave(k1x = π/2). The first is represented by Filter A (4th-order compact)
in Fig. 9 and may be written

0.4ǔi −1 + ǔi + 0.4ǔi −1 = 0.4ui −1 + ui + 0.4ui +1

− 1

80
(ui +2 − 4ui +1 + 6ui − 4ui −1 + ui −2). (3.14)

The second filter is confined even more strongly to high wave numbers and is represented
by Filter B in Fig. 9. It is represented by

0.475ǔi −1 + ǔi + 0.475ǔi +1 = 0.475ui −1 + ui + 0.475ui +1

− 1

320
(ui +2 − 4ui +1 + 6ui − 4ui −1 + ui −2). (3.15)

Explicit fourth-order formulations are necessary for the boundary nodes of the filter. For-
mulations that exactly filter theωc = π waves are

ǔ1 = 15

16
u1 + 1

16
(4u2 − 6u3 + 4u4 − u5), (3.16)

ǔ2 = 3

4
u2 + 1

16
(u1 + 6u3 − 4u4 + u5). (3.17)

The three-dimensional version of (3.14), (3.15), or (3.9) is realized by performing
three passes of the one-dimensional filters orthogonally. The compact filter is used in the
x- andy-directions, and either the compact or the explicit filter is used on the variable grid
(discussed below) in thez-direction.

3.3. Time Differencing

A major focus of the time-differencing scheme is to ensure that the flow satisfies the
continuity equation. A third-order time accurate implementation of the projection method is
utilized. The first-order accurate projection method was proposed independently by Chorin
(1968) and Temam (1969) and extended to explicit time schemes by Fortinet al. (1971).
The projection method and a family of related time discretization schemes are discussed
in detail by Fletcher (1991), and appropriate boundary conditions are given by Kim and
Moin (1985). Additional discussion of the projection method appears in Gresho (1990), and
recent applications are presented by Karniadakiset al. (1991), Bellet al. (1989), and Rai
and Moin (1991).
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The projection method solves the momentum equations in two fractional steps. The first
step forms an auxiliary flow field,u∗, at the new time level by integration of the nonlinear,
buoyancy, and dissipation terms. The second step then corrects the auxiliary flow field by
applying the pressure gradient to guarantee incompressible flow.

An implementation of the first step of the projection method is illustrated here using
third-order Adams–Bashforth time stepping:

u∗ − un

1t
= 23

12

(
−u · ∇u − k̂ Riρ + 1

Re
∇2u

)n

− 16

12

(
−u · ∇u − k̂ Riρ + 1

Re
∇2u

)n−1

+ 5

12

(
−u · ∇u − k̂ Riρ + 1

Re
∇2u

)n−2

. (3.18)

It is followed by the projection step, in whichu∗ is projected onto its non-divergent subspace,
un+1, according to the relations

un+1 − u∗

1t
+ ∇ p̄n+1 = 0, (3.19)

∇ · un+1 = 0. (3.20)

The appropriate pressure field for the projection step is formed by taking the divergence
of (3.19) with the condition (3.20) and solving the resulting Poisson equation,

∇2 p̄n+1 = ∇ · u∗

1t
. (3.21)

Boundary conditions for Poisson’s equation of the Neumann type are obtained by using
the component of (3.19) normal to the boundary, e.g., atz= 0,

∂ p̄

∂N

∣∣∣∣n+1

B

= −
(
un+1

B − u∗
B

) · N

1t
= ∂ p̄

∂z

∣∣∣∣n+1

B

= −wn+1
B − w∗

B

1t
. (3.22)

The boundary valuesun+1
B ·N are updated according to known boundary conditions, such as

those appropriate for no-slip, free-slip, or periodic boundaries. The key to making (3.22) a
stable boundary condition is correctly evaluatingu∗

B ·N. Following Kim and Moin, (3.18) is
solved at the boundaries using one-sided derivatives as if no true boundary condition were
known. Thus, the auxiliary velocity field,u∗

B, influences the determination of the pressure
field at the boundary, which in turn influences the determination of the boundary velocity,
un+1

B , at the new time level. The projection step is completed by updating the boundary
velocities to their prescribed values at each new time level to eliminate the buildup of
roundoff and truncation errors.

In their discussion of the projection method, Peyret and Taylor (1983) state that, since
the auxiliary velocity field appears both in the boundary condition for pressure (3.22) and
Poisson’s equation (3.21), it cancels identically, and therefore, a homogeneous boundary
condition for pressure is sufficient. Chorin (1984) points out that their scheme is unstable
and inconsistent. This inconsistency is demonstrated by Kim and Moin (1985). Gresho
(1990) claims, however, that he has experienced no inconsistency using the homogeneous
boundary condition, and discusses the two options in detail, giving preference to use of the
simpler homogeneous boundary condition.
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In the present work, the pressure field was found to be unstable when the homogeneous
boundary condition was applied, and the instability became significant at long integration
times. The numerical instability appears to depend on the type of physical velocity boundary
conditions chosen. For a no-slip condition at the wall the instability was evident but very
weak, and the time integration of the flow could be completed without significant loss of
accuracy using the approximate homogeneous pressure boundary condition. For a free-slip
boundary condition, however, the instability was too large to proceed with the approximate
boundary condition. The probable cause is the relative magnitude ofw∗

B for the two cases,
because it is nearly zero for the no-slip wall but becomes much larger in the free-slip case.
It may be that the disagreement in the literature as to the nature and effect of the instability
arises from experiments conducted using differing physical boundary conditions. Fletcher
(1991) adds that, for the closely related MAC method, the permissible use of∂ p̄

∂N |B = 0 is
specific to a particular second-order staggered grid spatial discretization, suggesting that
other choices of numerical methods besides boundary conditions may also influence the
strength and nature of the instability.

Karniadakiset al. (1991) demonstrate that the temporal treatment of the projection step
is exact, and that the temporal accuracy of the overall method is determined only by the
accuracy used for other terms in governing equations. They formalize the demonstration by
writing the definition (following their nomenclature)

∇ p̄n+1 = 1

1t

∫ tn+1

tn

∇ p dt. (3.23)

Thus, the projection method is compatible with the explicit Adams–Bashforth scheme,
except that the average pressure field,p̄n+1, is used to guarantee incompressible flow at the
n+1 time level rather than a combination of the pressure fieldspn, pn−1, pn−2 from earlier
time levels.

From this view, advantages of the projection method become evident. The average pres-
sure fieldp̄n+1 properly compensates for the truncation errors of the time and spatial dis-
cretization schemes that occur during the time integration, and thus the projection method is
not susceptible to the accumulation of errors from the right-hand side of Poisson’s equation
in the same way as an explicit pressure treatment.

The projection method is implemented together with the third-order Adams–Bashforth
(AB3) scheme. Startup of the simulation is done by using a forward Euler (AB1) time
step for the first step and a second-order Adams–Bashforth (AB2) time step for the second
time step. Advantages of the AB3 scheme, compared with several other time differencing
methods, are discussed in Durran (1991). The main advantage of the AB3 scheme over
more commonly used explicit second-order schemes, such as the leap-frog (L-F) method
or the (AB2) scheme, is its stability. The leap-frog, (L-F) scheme is subject to a temporal
oscillation of period 21t . The second-order Adams–Bashforth (AB2) scheme has a weak
unstable growth of order(1t)3 (Canutoet al., 1988, p. 102). In addition the AB3 scheme
has smaller phase and amplitude errors than the AB2 or L-F schemes (Durran, 1991).

Greater efficiency is introduced in the model by using a variable time-stepping scheme
that allows the time step to change based upon local and temporal stability criteria. (When a
spatially variable grid is used, the local stability is proportional to the grid spacing, discussed
below.) Gear and Watanabe (1974) demonstrate that variable time-stepping (multistep)
methods have the same stability properties as the constant step Adams–Bashforth schemes
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if the time step is changed in a relatively smooth fashion. Third-order accurate time stepping
is maintained by integrating according to the relations

un+1 = un + At1t1Fn + Bt (1t1 + 1t2)Fn−1 + Ct (1t1 + 1t2 + 1t3)Fn−2, (3.24)

where1t1 is the time step between time leveln+1 andn, 1t2 is the time step between time
level n andn − 1, 1t3 is the time step between time leveln − 1 andn − 2,Fn represents
the flux ofu evaluated at time leveln, and

At = 1 + 1t1(21t1 + 61t2 + 31t3)

61t2(1t2 + 1t3)
, (3.25)

Bt = −1t2
1(21t1 + 31t2 + 31t3)

61t21t3(1t1 + 1t2)
, (3.26)

Ct = 1t2
1(21t1 + 31t2)

61t3(1t1 + 1t2 + 1t3)(1t2 + 1t3)
. (3.27)

Figure 10 shows the actual time step used throughout a typical three-dimensional simu-
lation. In the beginning of the simulation a constant time step fixed by the diffusion stability
limit (D) is used (Subsection 3.4). After approximately time 30, the advection stability limit
(A) is more restrictive, and the time step is adjusted so that the most severe Courant number
criteria is held at a stable value of 99% of the maximum allowable value (according to
criteria described below that includes a safety factor which is related to the aspect ratio of
the nonuniform grid). This condition is typically encountered at the very fine mesh near
the wall during the wave amplification process. By using the variable time step approach
an efficiency of approximately 50% is saved. The calculation shown here took 12,000 time
integration steps to complete, but if a constant time step(1t = 0.0075) had been used that
was small enough to maintain numerical stability throughout the simulation, the calculation
would have taken over 18,000 time steps. Additional difficulty is avoided with the variable

FIG. 10. The time step used in the numerical simulations is allowed to adjust during the simulation to achieve
the largest stable time step during the transient process. The diffusion stability limit (D) is constant through-
out the computation with a maximum stable time step of approximately 0.0295, which for the first 30 time units is
the time step used. Line A is the stable value derived from the advection-buoyancy analysis given by Eq. (3.40).
The advection stability limit becomes smaller than the diffusion limit after time 30 and varies throughout the
calculation. Line D is made to follow the actual time step used in the simulation after time 30.
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time step method, becausea priori (before the simulation) the size of a sufficiently small
(constant) time step is unknown. In contrast, in the variable time step approach, the flow
field itself sets an economical stable time step.

3.4. Numerical Stability Criteria

The stability limits of the combined time and space differencing schemes for the non-
linear system may be approximated by performing a von Neumann stability analysis on
the linearized system of governing equations. The numerical stability of the advection,
buoyancy, and pressure terms are examined together and the stability of the diffusion terms
is examined separately. This approach yields two separate necessary conditions for linear
stability but does not guarantee sufficient conditions because the region of A-stability for
third-order Adams–Bashforth approximation tods/dt = (a+bi)s is not a square in a plane
with coordinate axesa1t andb1t (Gear, 1971). An approximate safety factor, described
below, is used to convert the necessary conditions for the linear system (derived for a uni-
form grid) into sufficient conditions appropriate for the nonlinear system on a nonuniform
grid. Following the approach of Durran (1992) limits on the maximum stable time step for
the numerical simulation in the two-dimensional system are obtained. Again for simplicity
we letα = 0 and linearize the equations about a mean velocityŪ , assumed constant,

∂u

∂t
+ Ū

∂u

∂x
+ ∂p

∂x
= 0, (3.28)

∂w

∂t
+ Ū

∂w

∂x
+ Riρ + ∂p

∂z
= 0, (3.29)

∂ρ

∂t
+ Ū

∂ρ

∂x
− w = 0, (3.30)

∂u

∂x
+ ∂w

∂z
= 0. (3.31)

With Fourier component wave solutions foru, w, p, and ρ, of the form un
j1, j3 =

ûei ( j1k1x+ j3m1z−ωcn1t ), where the grid point indices in thex- andz-directions arej1 and j3,
respectively, and with leap-frog time stepping to illustrate the analysis, (3.28)–(3.31) may
be written in wavenumber space as
−sinωc1t + Cfl Dx 0 0 1t

1x Dx

0 −sinωc1t + Cfl Dx −i Ri 1t 1t
1z Dz

0 i 1t −sinωc1t + Cfl Dx 0
Dx

1x
Dz

1z 0 0




û
ŵ

ρ̂

p̂

=


0
0
0
0

 ,

(3.32)

whereCfl = Ū1t
1x , Dx = 1t/1x 3 sin(k1x)

2+ cos(k1x)
, andDz = 1t/1z 3 sin(m1z)

2+ cos(m1z) .
For non-trivial solutions the determinant of the coefficient matrix must be zero, which

leads to the condition

(−sinωc1t + Cfl Dx)
2 = Ri1t2D2

x

(1x2/1z2)(Dz/1z)2 + (Dx/1x)2
. (3.33)

The right hand side has a maximum atRi1t2, for all 0≤ k1x ≤ π and 0≤ m1z≤ π , and
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so the stability criteria becomes

|−sinωc1t | ≥ |Cfl Dx + √
Ri1t |. (3.34)

The maximum value ofDx is
√

3 atk1x = 2π
3 ; thus, for leap-frog time stepping, forωc1t

to be real valued, the stability criterion reduces to
√

3Cfl + √
Ri1t ≤ 1. (3.35)

Adams–Bashforth third-order time stepping has a stronger stability restriction than the
leap-frog scheme (see Durran, 1991). In this case it is required that

√
3Cfl + √

Ri1t ≤ 0.724. (3.36)

This result has been verified experimentally.
In practice,1z< 1x and Ū varies throughout the domain. In this case, the forgoing

analysis is modified to include a safety factor related to the most stringent stability restriction
in the domain. Thus, we definēU (x, y, z) = (u2 + v2 + w2)1/2 as the local magnitude of
the velocity field and seek the largest time step1t that is stable at every location in the
computational domain. For this we use

Cfl = Ū (x, y, z) 1t

1z
, (3.37)

and find the largest value of̄U (x, y, z)/1z(z) in the computational domain on the vari-
able grid (Subsection 3.6). While including the safety factor has the disadvantage of se-
lecting a smaller advective time step than may be necessary for stability and therefore
decreases the efficiency of the model, experience has always shown the model to be stable
when following this procedure. In addition, there is a small advantage to taking smaller
time steps than necessary because doing so increases the overall accuracy of the time
discretization.

The diffusion term is treated explicitly with AB3 time stepping in this model. Other
researchers have developed models that treat the diffusion term implicitly; e.g., Karniadakis
et al. (1991) uses third-order Adams–Moulton time differencing. Implicit treatment of the
diffusion term allows larger stable time steps. Experience has shown, however, that, for
the problem being studied here, the nonlinear advection term has more restrictive stability
criteria than the explicit treatment of the diffusion term. Thus, there is no clear advantage
to using the more complicated implicit diffusion treatment.

The stability criteria for the diffusion terms are analyzed separately from the advection
terms. This is done because of the simplicity of the analysis, the linearity of the diffusion
terms, and because other factors of equal or greater importance (e.g., nonlinearity, nonuni-
form grid) have been neglected. The diffusion terms have different temporal properties from
the advection terms and yield a second necessary condition for stability. Again for wave
solutions, and with the discrete wavenumber representation for the second derivative from
the compact scheme (Lele, 1992) the AB3 method yields the restriction

β = 1t

Re1z2
≤ 0.545

6
. (3.38)

This result is less restrictive than the time-lagged explicit treatment necessary for the leap
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frog scheme, which yieldsβ ≤ 0.5
6 . The stability analysis for the density equation is equiv-

alent, except that it requires a modified definition ofβρ = 1t
Pe1z2 .

3.5. Numerical Boundary Conditions

A wave-absorbing sponge layer is frequently used as an open boundary condition, e.g.,
Davies (1983) and Durranet al. (1993). In this model a sponge layer is used in the upper
region of the finite computational domain. This layer is typically located far below the free
surface of the fluid, and its purpose is simply to mimic the presence of the fluid above the
computational domain. Rayleigh damping is an efficient wave-absorbing sponge layer, and
is competitive with the best radiation boundary schemes for certain parameter ranges. The
accuracy, however, is highly dependent upon the number of points used in the sponge layer.
Durranet al. (1993) compare the wave absorbing layer to other wave permeable outflow
boundary conditions. Typically, in the present model, ten percent of the total grid points
(∼13–40) are used to form the sponge layer. The damping coefficients are suggested by
Klemp and Lilly (1978).

Rayleigh damping is of the form

µ̄i = µi − σi (µi − µi 0), (3.39)

whereµ̄ is the damped value of an arbitrary function (such asu∗ orρn+1), µ is the predamped
value,µi 0 is the relaxed value of the function in the sponge region (usually zero), andσi

(discrete values of the damping coefficients at grid pointi ) is given for the present case by
the Gaussian function

σz = e−(3.5zd/Ld)2
/2, 0 ≤ zd ≤ Ld, (3.40)

wherezd = z− (Lz − Ld) andLd is the depth of the sponge layer (e.g.,Lz − Ld < z< Lz).
The two major disadvantages with the sponge layer are that it becomes computationally
expensive if used at several open boundaries in a model, and it has the property that longer
waves are absorbed less efficiently than short waves.

Additional complexity arises in the implementation of the sponge layer because it does
not damp the flow in a non-divergent manner. The divergence is evident since the coefficients
σi are functions only ofz. This problem is solved by implementing the Rayleigh damping
step before the projection step. In this manner the total damping procedure includes

ūn+1
i = u∗

i − σi (u
∗
i − uio) − 1t

∂ p̄n+1

∂z
, (3.41)

where the value of the pressure gradient is determined from the projection method.
Neumann boundary conditions arise in the implementation of the zero flux boundary

condition for density and for the free-slip velocity condition. The density boundary condition
comes from (2.50),∂ρ

∂z |b = cosα. The formula for third-order accuracy on a variable grid
(see the following section) is

ρ1 = −1z11z2(1z1 + 1z2)

(1z1 + 1z2)2 − 1z2
1

cosα + (1z1 + 1z2)
2

(1z1 + 1z2)2 − 1z2
1

ρ2

+ 1z2
1

1z2
1 − (1z1 + 1z2)2

ρ3, (3.42)
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FIG. 11. The variable-mesh grid in thez direction1z as a function ofz. Also shown are the constant values
of 1x and1y, the grid spacings used in thex- andy-directions.

where1z1 is the distance between the locations ofρ1 andρ2, and1z2 is the distance
between the locations ofρ2 andρ3. A free-slip condition∂u

∂z |b = 0 is implemented with

u1 = (1z1 + 1z2)
2

(1z1 + 1z2)2 − 1z2
1

u2 + 1z2
1

1z2
1 − (1z1 + 1z2)2

u3. (3.43)

3.6. Variable Grid Spacing

A variable-mesh grid is used to cluster computational nodes near the physical boundary
at the ocean floor. An algebraic grid transformation from physical space(x, y, z) to the
rectangular computational space(x, y, ζ ), as shown in Fig. 11, is described here. The
transformation is a function only of thez coordinate and is given by

z = aζ ζ + bζ ζ
2, 0 ≤ ζ ≤ 1. (3.44)

The inverse transform,ζ = G(z), is

ζ = −aζ

2bζ

+
√(

aζ

2bζ

)2

+ z

bζ

. (3.45)

The coefficientsaζ andbζ are chosen so that the grid spacing closest to the wall,1zmin, is
about one tenth the grid spacing near the top of the domain1zmax. For a three-dimensional
realization with 130 grid points in the vertical, a typical choice employed isaζ = 0.4 and
bζ = 3.1; results for1z as a function ofz are shown in Fig. 11. For a two-dimensional
realization with 400 grid points in the vertical, a typical choice employed isaζ = 1 and
bζ = 2.5.

Thez-derivatives in the governing equations may be expanded by the chain rule, e.g.,

∂u

∂z
= ∂u ∂ζ

∂ζ ∂z
, (3.46)
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where

∂ζ

∂z
= 1

2bζ

√
(aζ /2bζ )2 + z/bζ

= G1(z) = 01(ζ ) = 1

aζ + 2bζ ζ
, (3.47)

which yields

∂u

∂z
= 01(ζ )

∂u

∂ζ
. (3.48)

By repeating this procedure∂
2u

∂z2 is obtained:

∂2u

∂z2
= ∂2u

∂ζ 2

(
∂ζ

∂z

)2

+ ∂u

∂ζ

∂2ζ

∂z2
. (3.49)

With the definition

G2(z) = ∂2ζ

∂z2
= −1

4b2
ζ

(
(aζ /2bζ )2 + z/bζ

)3/2 = 02(ζ ) = −1

4b2
ζ [ζ + aζ /2bζ ]3

, (3.50)

Eq. (3.49) may be written

∂2u

∂z2
= 02

1(ζ )
∂2u

∂ζ 2
+ 02(ζ )

∂u

∂ζ
. (3.51)

In addition, the fourth-order spatial filter requires the use of the term

∂4u

∂z4
= 04

1(ζ )
∂4u

∂ζ 4
+ 602

1(ζ ) 02(ζ )
∂3u

∂ζ 3
+ [

401(ζ ) 03(ζ ) + 302
2(ζ )

]∂2u

∂ζ 2
+ 04(ζ )

∂u

∂ζ
,

(3.52)

where03(ζ ) and04(ζ ) are defined by

03(ζ ) = 3

8b3
ζ (ζ + aζ /2bζ )5

, (3.53)

04(ζ ) = −3

8b4
ζ (ζ + aζ /2bζ )7

. (3.54)

Appendix B contains details concerning the fourth-order compact filter on the variable-mesh
grid.

A motivation for choosing an algebraic grid transformation of this type is that the inverse
transform may be determined exactly. To maintain fourth-order spatial accuracy in the
mode, transformed derivatives such as∂ζ

∂z must be known to at least fourth-order accuracy.
By choosing the algebraic transform given above, the derivatives for the transformation are
known exactly, and the spatial accuracy is not compromised. Further discussion of these
concerns and various approaches to resolving them may be found in Rai and Moin (1991).
Alternative transforms are available that allow for higher-order clustering near the boundary.
One such choice would bez= aζ ζ

2 + bζ ζ
4. Alternative, commonly used hyperbolic grid

transforms are give in Andersonet al. (1984).
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Applying these relations to the governing equations (2.13)–(2.17) and the pressure pro-
jection equation (3.21) leads to the modified set

∂u

∂x
+ ∂v

∂y
+ 01(ζ )

∂w

∂ζ
= 0, (3.55)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ 01(ζ )w

∂u

∂ζ
+ Riρ sinα

= −∂p

∂x
+ 1

Re

(
∂2u

∂x2
+ ∂2u

∂y2
+ 02

1(ζ )
∂2u

∂ζ 2
+ 02(ζ )

∂u

∂ζ

)
+ Fu, (3.56)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ 01(ζ )w

∂v

∂ζ

= −∂p

∂y
+ 1

Re

(
∂2v

∂x2
+ ∂2v

∂y2
+ 02

1(ζ )
∂2v

∂ζ 2
+ 02(ζ )

∂v

∂ζ

)
+ Fv, (3.57)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ 01(ζ )w

∂w

∂ζ
+ Riρ cosα

= −01(ζ )
∂p

∂ζ
+ 1

Re

(
∂2w

∂x2
+ ∂2w

∂y2
+ 02

1(ζ )
∂2w

∂ζ 2
+ 02(ζ )

∂w

∂ζ

)
+ Fw, (3.58)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ 01(ζ )w

∂ρ

∂ζ
− w cosα − u sinα

= 1

Pr Re

(
∂2ρ

∂x2
+ ∂2ρ

∂y2
+ 02

1(ζ )
∂2ρ

∂ζ 2
+ 02(ζ )

∂ρ

∂ζ

)
+ Fρ, (3.59)

∂2 p̄n+1

∂x2
+ ∂2 p̄n+1

∂y2
+ 02

1(ζ )
∂2 p̄n+1

∂ζ 2
+ 02(ζ )

∂ p̄n+1

∂ζ
= 1

1t

(
∂u∗

∂x
+ ∂v∗

∂y
+ 01(ζ )

∂w∗

∂ζ

)
.

(3.60)

Two implications of using the variable grid deserve brief comment. For many numerical
schemes there is appropriate concern about their order of accuracy, whether it be second-
order, fourth-order, or spectral accuracy. The present model consistently maintains fourth-
order spatial accuracy, meaning that the leading order error terms areO(1z4). It should be
realized, however, that when the grid spacing1z changes by an order of magnitude across
the domain, the absolute errors involved also may vary across the domain, in this example
by relative magnitudes of up to 104. Consequently, grid clustering is an even stronger
tool for achieving desired numerical resolution than using higher-order schemes. Standard
finite-difference schemes use second-order accuracy, and some even use first-order spatial
accuracy locally (e.g., the Total Variation Diminishing (TVD) scheme). This accuracy can
be satisfactory if a high enough concentration of grid points is used. In the case of limited
resources and marginally sufficient resolution, however, higher order schemes such as the
compact scheme are very useful.

Our second comment addresses modeling turbulence is regions of high aspect ratios. In
the present model the ratio of1x : 1z is approximately 5:1 at the wall. Other models use
ratios of up to 100:1. A complication that may arise if the flow is turbulent in these regions
is that gradients inz, adequately resolved in the high resolution direction, may be rotated
(as by an eddy) into the low resolution direction and hence be unresolved. The use of high
aspect ratio grids is justified when applied in regions of non-isotropic flows, such as in the
viscous layer near a wall where high shears occur predominately in one direction.
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3.7. Pressure Solution

Several methods have been examined to solve for the pressure field in the three-dimen-
sional model in an efficient and accurate manner. The preferred solution method uses direct
matrix inversions. This method is more accurate than iterative or multigrid techniques,
eliminates the uncertainty of iterating subject to a convergence criteria, and requires less
memory and CPU time. It is, however, limited to situations in which the problem has two
directions of periodicity and uniform discretization. The governing Poisson equation,

∂2 p

∂x2
+ ∂2 p

∂y2
+ 02

1(ζ )
∂2 p

∂ζ 2
+ 02(ζ )

∂p

∂ζ
= ∇ · Eu

1t
= R(x, y, ζ ), (3.61)

is Fourier transformed in thex- and y-directions to form a set of separable equations for
the pressure coefficientŝ̂p

−k2 ˆ̂p − l 2 ˆ̂p + 02
1(ζ )

∂2 ˆ̂p

∂ζ 2
+ 02(ζ )

∂ ˆ̂p

∂ζ
= ˆ̂R(k, l , ζ ). (3.62)

The modified Poisson equation is then solved for wave numbersk andl using explicit differ-
ence formulas for theζ derivatives and the solution for the pressure coefficientsˆ̂p(k, l , ζ )

is transformed back into physical space to obtain the pressure field. The implementation of
this method also requires transforming the pressure boundary conditions.

The pressure solution has spectral accuracy in the horizontal directions and achieves
fourth-order accuracy in the vertical direction by using five and four point stencils, res-
pectively, as in (2.44), to estimate∂2 p/∂ζ 2 and∂p/∂ζ . The method requires subsequent
inversion of a pentadiagonal matrix of the form(−02

1(i )

121ζ 2
+ 02(i )

121ζ

)
ˆ̂p−2 +

(
402

1(i )

31ζ 2
− 202(i )

31ζ

)
ˆ̂pi −1 +

(−502
1(i )

21ζ 2
− k2 − l 2

)
ˆ̂pi

+
(

402
1(i )

31ζ 2
+ 202(i )

31ζ

)
ˆ̂pi +1 +

(−02
1(i )

121ζ 2
− 02(i )

121ζ

)
ˆ̂pi +2 = ˆ̂R(k, l , i ), (3.63)

with special consideration required for the first two boundary nodes.
After the Poisson solver yields the pressure at every grid point, the pressure derivatives,

∂p
∂x ,

∂p
∂y , and ∂p

∂z are formed using the compact scheme.

3.8. Flow Visualization

The complete velocity and density fields are stored regularly throughout the simulation
to enable visualizations of the flow field at times of interest. Additional visualizations are
made of the vorticity and stream-function fields.

A key issue related to wave breakdown is whether the turbulent boundary layer exchanges
fluid with the interior domain, or whether it predominantly continues to mix the same fluid
(Garrett, 1991a). Two additional features were added to the model experiments to study this
issue. The first feature is the ability to track fluid particles. Particle trajectories are examined
to determine if a statistically significant number of these particles escape from the boundary
mixed layer, or if particles initially outside the boundary layer are entrained into it.

Sets of 2,000–10,000 Lagrangian particles are released in the flow in a rectangular lattice,
after the flow has begun to develop. The equations describing their trajectories are time
stepped using an Euler scheme with variable time steps. The fluid velocitiesEup(x, y, z, t),
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at the particle locations,EX p(x, y, z, t), are calculated using tri-linear interpolation, and then
the particle locations are updated with the equation

EXn+1
p = EXn

p + 1t Eun
p. (3.64)

The particles are tracked for a number of wave periods and their locations are written every
ten time steps. It is straightforward to modify the particle trajectory equation to include
other effects on the particles (e.g., buoyancy, drag), thereby describing motion of particles
whose trajectories differ from the local fluid motion (e.g., Maxey and Riley, 1983; Squires
and Eaton, 1990).

A passive scalar field is also added in some of the simulations to observe net mass
transport from one region to another. For the three-dimensional model a transport equation
for the scalar quantitySD is added to the system, e.g.,

∂SD

∂t
+ u

∂SD

∂x
+ v

∂SD

∂y
+ w

∂SD

∂z
= 1

Sc Re

(
∂2SD

∂x2
+ ∂2SD

∂y2
+ ∂2SD

∂z2

)
. (3.65)

The new parameter in this equation is the Schmidt number,Sc= ν/κS, the ratio of diffusi-
vities for momentum and for the scalar. To maintain adequate resolution of scalar gradients,
Schmidt numbers between 0.7 and 1.5 are used in the experiments, depending on the
Reynolds number.

The scalar field behaves as a “dye,” allowing observations of the transport of dyed fluid
from the boundary layer region into the interior stratified domain. Initially the dye is released
within the turbulent boundary layer after the flow has developed for a few wave periods
and reached a quasi-steady state of mixing. The location of the dye is monitored as the flow
develops through a number of wave periods.

3.9. Energetics

To understand the physical processes in the flow, its energetics are fundamental. Statistical
quantities of interest are calculated during the simulation. Below are listed the equations for
calculating the volume averaged kinetic energy (KE), potential energy (PE), total energy
(TE= KE+ PE), dissipation rate of kinetic energy(ε), dissipation rate of potential energy
(χ), and buoyancy flux (BF), respectively,

KE = 1

2V

∫
V
(u2 + v2 + w2) dV, (3.66)

PE = Ri

2V

∫
V

ρ2 dV, (3.67)

ε = 1

V

∫
V

u

Re

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
+ v

Re

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
,

+ w

Re

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
dV, (3.68)

χ = 1

V

∫
V

Riρ

Pr Re

(
∂2ρ

∂x2
+ ∂2ρ

∂y2
+ ∂2ρ

∂z2

)
dV, (3.69)

BF = 1

V

∫
V

Ri ρ(w cosα + u sinα) dV. (3.70)
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The wave forcing scheme of Subsection 2.3 adds energy to the flow at each time step.
The total rate of work inputW is the sum of the kineticWKE and potentialWPE energies
added to the internal wave train, and may be calculated by the volume averages:

WKE = 1

V

∫
V
(uFu + wFw) dV, (3.71)

WPE = 1

V

∫
V

Ri ρ Fρ dV. (3.72)

The flux of potential energy across the boundary is included in the dissipation term
χ = Riρ∇2ρ/(Pr Re), which includes both the dissipation and diffusion of potential energy.
The net integrated diffusion is zero in the interior of the domain, but diffusive flux can be a
source or sink across a physical boundary. Equations (3.77) below give an alternate method
for determiningχ . Several numerical simulations were conducted where dissipation was
calculated using both (3.77) and (3.69). Typically, in the gravity wave reflection simulations,
the magnitude of the diffusive flux of energy across the boundary was less than 1% of the
dissipation rate, and the two curves were indistinguishable. Since it is much more efficient
to calculate the two quantities together, as in (3.69), it is this approximate procedure that is
generally followed.

The kinetic energy equation is a useful tool in examining flow development. For a control
volume extending from the sloping wall up to the base of the sponge layer, the volume
averaged kinetic energy equation can be obtained with the use of the divergence theorem.
With this choice of the control volume, the dissipation of energy in the sponge layer is
eliminated and replaced with terms representing the flux of energy across the control surface
up into the sponge layer:

∂KE

∂t
= 1

V

∫
V

[−Ri ρ(w cosα + u sinα) + ε + D fke + WKE
]

dV

+ 1

At

∫ xl

0

∫ yl

0
(w · KE)|z=top dx dy+ 1

At

∫ xl

0

∫ yl

0
(w · p)|z=top dx dy, (3.73)

whereDfke is the dissipation-rate of kinetic energy by the filter, andAt is the area of the top
control surface.

The potential energy equation is derived by multiplying the density equation byρRi and
averaging over the computational domain.

∂PE

∂t
= 1

V

∫
V

[
Riρ(w cosα + u sinα) + χ + Dfpe + WPE

]
dV

+ 1

At

∫ xl

0

∫ yl

0
(w · PE)|z=top dx dy, (3.74)

whereDfpe is the dissipation-rate of potential energy by the filter, andWPE is the rate of work
input of potential energy from the wave forcing mechanism. When added these equations
form the total energy equation,

∂TE

∂t
= 1

V

∫
V

[
ε + χ + D fke + D f pe + W

]
dV

+ 1

At

∫ xl

0

∫ yl

0
[(w · KE)|z=top + (w · p)|z=top + (w · PE)|z=top] dx dy. (3.75)
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The energy and dissipation-rate spectra provide tools for examining nonlinearities and
small-scale behavior of the flow. The spectra are straightforward to compute in planes
parallel to the slope, because the flow field is known on a uniform (and periodic) grid.
The vertical energy spectrum is determined by interpolating the velocity and density fields
from the clustered grid onto a higher density uniform grid, e.g., from 400 grid points in
the vertical to 1024 for the two-dimensional model or from 130 to 512 grid points in
the three-dimensional model. Then the velocity fields are Fourier decomposed using a
fast Fourier transform (FFT) package developed by Temperton (1983). Periodicity in the
vertical direction is imposed by adding a mirror image of the flow field to the domain before
decomposition. The final energy spectrum is formed from the Fourier wave amplitudes of
the velocity fields by multiplying by their complex conjugates, dividing the result by two,
and integrating these values over the domain.

The dissipation-rate spectra are formed by defining the viscous dissipation-rate function
at every grid point. For a three-dimensional Newtonian, incompressible, viscous fluid the
dissipation-rate function,8, is given by

8 = 1

Re

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2

+
(

∂v

∂x
+ ∂u

∂y

)2

+
(

∂w

∂y
+ ∂v

∂z

)2

+
(

∂u

∂z
+ ∂w

∂x

)2
]
. (3.76)

The associated density (or potential energy) dissipation-rate function, and spectra are formed
in like manner as

χ = 1

Pr Re

[(
∂ρ

∂x

)2

+
(

∂ρ

∂y

)2

+
(

∂ρ

∂z

)2
]
. (3.77)

After the fields are formed they are interpolated onto a uniform mesh and Fourier
decomposed. The amplitude of the complex Fourier wave components is integrated over
the domain and plotted as the dissipation spectrum.

3.10. Code Optimization

To minimize in-core computer memory usage, as few data fields as feasible are stored
at each time level. The approach used is to save the fluxes for the right hand side of the
governing equations after every time step. The three-dimensional model, using third-order
Adams–Bashforth time stepping, requires saving 12 flux fields (3 for each equation), 5 primi-
tive variable fields, and 6 work arrays usually containing derivative fields to form the fluxes.

Particular attention has been paid during code development to allow the code to take ad-
vantage of increased performance speed achieved through vectorization and parallelization.
The usual approach is to calculate for one plane at a time and to vectorize across the plane
(i.e., while calculating values of∂u

∂x , the code is vectorized to calculate 128 derivatives for an
entirey plane simultaneously). This approach is ideally designed for gains by paralleliza-
tion of the code when ported to a parallel computer. Limited testing on a multi-processor
Silicon Graphics Server shows that the code runs 3.9 times faster when run concurrently on
5 processors than when run on a single processor.
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3.11. Physical Parameters

Following conventions, we define four different Reynolds numbers in the model. The
first is the dissipation Reynolds number,

Red = ε

νN2
∼ u3

νL N2
=

(
uL

ν

)(
u

N L

)2

∼ Re Fr2, (3.78)

which relates the dissipation rate of kinetic energy,ε, to the viscosity and buoyancy fre-
quency. The second is the boundary layer Reynolds number,

Reδ = U∞δ

ν
, (3.79)

whereU∞ is the maximum velocity within the boundary layer, andδ is the boundary layer
thickness. The third is the wave Reynolds number,

Rew = Cλz

ν
∼ λNλ

ν
=

(
uλ

ν

) (
Nλ

u

)
∼ Re

1

Fr
, (3.80)

which relates an approximate wave phase speed,C, and vertical wavelength,λz, to the
viscosity. The last is simply the Reynolds number of the flow,

Re= Uwλ

ν
, (3.81)

whereUw is the maximum current speed in the oncoming wave train, andλ = 2π/|k| is its
wavelength.

From the simulations, typical values for these Reynolds numbers are

5 ≤ Red ≤ 200, (3.82)

10 ≤ Reδ ≤ 200, (3.83)

5,000≤ Rew ≤ 40,000, (3.84)

300≤ Re≤ 4000. (3.85)

In a similar fashion we define two Richardson numbers, the Richardson numberRi =
(Nλz/Uw)2 based on the current velocity, and the wave Richardson numberRiw =
(Nλz/C)2 based on the phase speedC. Rew andRiw are independent of the wave ampli-
tude,A, while ReandRi depend directly onA. Typical values for the Richardson numbers
are 20< Ri < 500, whileC is defined so thatRiw = 1 in all of the experiments. Within the
numerical modelRew andRiw are used. Therefore the two key experimental parameters in
the model areRew and A. Experimental results are normally presented in terms ofRi and
Rewhich include the dependence on the wave amplitude.

It is important to note that the simulations are conducted at moderately low Reynolds
numbers, far below values typical for oceanic conditions. The simulations are conducted at
similar Reynolds numbers to those achieved in related laboratory experiments (though the
simulations are at lower Richardson numbers). Typical oceanic internal waves may have
Reynolds numbers of 107 based upon a length scale of 100 m, current speed of 10 cm/s,
and kinematic viscosity of 10−6 m2/s.
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The present numerical methodology was not designed to include the full complexity of
oceanic conditions, but rather to study the fundamental physics of the internal wave reflection
problem. The goal is to seek qualitative and semi-quantitative information about physical
processes that are not well understood. Important questions regarding the dependence on
the Reynolds number, and effects of other oceanic flow features, are not accessible within
the present approach. Since the internal wave reflection does not appear to be microscale
driven, however, small-scale turbulence and viscosity do not dominate or invalidate the
useful information derived from the results. Here, the role of turbulence and small scale
features is primarily to dissipate internal wave energy. The present model, with its inherent
limitations, serves as a useful starting point for numerical studies of internal wave reflection.

Several additional dimensional and dimensionless parameters are used in the simulations,
and some typical values are listed here. Physical constants for gravity and background
density are

g = 9.8 m/s, ρo = 1000 kg/m3. (3.86)

In turbulent simulations it is often necessary to have the diffusivity of density greater than
the diffusivity of momentum to adequately resolve strong density gradients throughout the
time integration. It is generally agreed that Prandtl number relating turbulent eddy viscosity
coefficients for density and momentum should be of order 1; so we choose

0.6 ≤ Pr ≤ 1. (3.87)

For the problem to be periodic inx the width of the domainLx is set to an integral number of
wavelengths (typically,n = 1 orn = 2) appropriate toLx = nλx. Typically, small values of
the bottom slope 0≤ α ≤ 30◦ and angle of wave propagation 3≤ θ ≤ 30◦ are of interest. A
set of physical parameters, chosen in the mid-range of velocity and stratification appropriate
for this study, leads to the set of model parameters

Rew = (10−1 m/s)(10 m)

10−4 m2/s
= 10,000, (3.88)

Riw =
[
(10−2 s−1)(10 m)

10−1 m/s

]2

= 1, (3.89)

Pe= Re. (3.90)

This set of nondimensional parameters has been used in well-resolved, direct numerical
simulations of the gravity wave reflection problem.

3.12. Running the Experiments

This section presents a brief description of how the numerical experiments are monitored
and adjusted throughout the computations. After choosing the parameters for each three-
dimensional simulation the flow is initialized with white noise in the lower half of the
domain as described in Subsection 2.5. On a low resolution grid of 65× 33× 130(x, y, z)
grid points, the noise is then allowed to adjust for one to two buoyancy periods into low-
level, stratified turbulence exhibiting coherent structures. At this point the wave forcing
mechanism is turned on in the top half of the domain and the waves begin to propagate
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downward towards the wall in a somewhat linear fashion. During this transient stage of the
calculation, no additional resolution is required to resolve the developing flow field.

Typically after four to five buoyancy periods, the leading edge of the wave train reaches
the bottom slope. By this time the energy in the noise near the boundary has typically
died away by roughly an order of magnitude, from its initial level to a weak background
perturbation field. At this time the energy density level in the noise field is approximately one
to five percent the energy density of the oncoming wave. After two to three more buoyancy
periods, the flow starts to exhibit nonlinear behavior as the wave reflection process begins
to strengthen. A typical flow feature observed during this stage is a strong density gradient
developing in the boundary layer region. At this stage of flow development the simulation is
moved onto a higher resolution numerical grid. The process of regridding is done by using
Fourier interpolation, for example, onto a 129× 33× 130 grid point mesh.

During the next wave period it usually becomes apparent if the flow will develop into
turbulence or remain laminar. The turbulent cases often required further regridding onto
more refined grids to resolve the three-dimensional structures that developed in the bound-
ary layer. This is also done by Fourier interpolation in they-direction, onto grids of either
129× 65× 130, or when warranted 129× 129× 130, depending upon the physical dimen-
sions of the problem and resolution criteria. The grid clustering in thez-direction is not
changed during the simulations, but rather is set at the beginning to a degree that will
adequately resolve the boundary layer (based upon experience).

After regridding to the highest resolution for the simulation, the flow is run out for
10 to 30 more buoyancy periods (roughly 10,000 to 50,000 times steps). This typically
allows a quasi-steady flow pattern of wave reflection and breakdown to develop and be
recorded. The resolution requirements are determined by a number of factors. These in-
clude analysis of the energy spectrum as discussed above, comparisons of the energy
removed at well-resolved scales and by the scale-dependent filter, and determination of
whether a direct numerical or large eddy simulation is being conducted. Some of the nu-
merical simulations may be considered a hybrid between direct numerical and large eddy
simulations. This may be the most appropriate description for cases in which approxi-
mately 80% of the energy is dissipated at well-resolved scales by the true molecular effects
(e.g., through the kinetic energy dissipation rate) and approximately 20% of the energy
is dissipated by the hyperviscosity filter at the smallest scales on the numerical mesh.
In these cases, it is expected that the small degree of subgrid-scale dissipation does not
significantly affect the development of the flow at the large, energy-containing scales of
motion.

The three-dimensional simulations are computationally expensive and time consuming.
The high resolution runs (at 129× 129× 130 grid points) take approximately 24 hours of
CPU time on the Cray-YMP to complete 4500 time steps. The code is written in portable
FORTRAN 77, and the simulations have been conducted without modification on six plat-
forms including Stardent, Hewlett-Packard, DEC, Cray, SGI, IBM, and Sun servers, su-
percomputers and workstations. A simulation at a resolution of 129× 65× 130 requires
approximately 110 megabytes of memory using single precision on a 32-bit workstation. It
takes about two minutes of CPU time per time step on a HP-9000 series 715 workstation,
or 9 seconds of CPU time per time step on the Cray-YMP. Frequently, to make the best
use of computer resources, the low resolution portions of the simulation were conducted
on the local workstations and then restarted on the Cray computers after regridding for the
turbulent portions of the simulation.
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3.13. Summary

The numerical models developed herein provide state-of-the-art computational tech-
niques for simulating incompressible, stratified flows. These models include several new
features, such as the wave forcing mechanism and the combination of variable time-stepping
with the third-order Adams–Bashforth projection method. The models are designed for
accuracy and, when used at low Reynolds number, represent a direct numerical simula-
tion (DNS) of a turbulent boundary layer. At higher Reynolds number the model may be
considered a large eddy simulation (LES) of the flow, with a simple hyperviscosity filter
used to dissipate energy from the subgrid scales of motion. The majority of the simulations
conducted for this study are direct numerical simulations. In the following section results of
DNS and LES simulations are presented. The gravity wave reflection problem for which the
code was designed illustrates the capabilities of the numerical model and permits insightful
analyses of the physics of the flow.

4. RESULTS

This section contains results from the computational experiments. Several high resolution
simulations have been conducted (Slinn, 1995) to investigate internal wave reflection and
are reported elsewhere (Slinn and Riley, 1996, 1998a, 1998b). These experiments used
oncoming waves of moderate amplitudes from the mechanical wave forcing scheme and
were designed to observe nonlinear interactions that occur in the bottom boundary layer.
Additional two-dimensional simulations and linear analyses were used for comparison, and
to help understand the influence of nonlinearity and three-dimensional interactions. Here,
results from DNS and LES examples of internal wave reflection will be described, but first
a brief description of the model-validation methods is given.

4.1. Model Validation

A variety of methods were used to validate the code and to gain confidence in the accuracy
of the numerical experiments. These fall into four categories: (1) comparison with analytical
solutions, (2) internal consistency checks, such as conservation of mass, momentum, and
energy, (3) comparison with experiments, and (4) meeting established resolution criteria.

The flow field explained by Phillips (1970) and presented in Subsection 2.6 provides an
analytic solution available for testing the accuracy of the code in two ways. The first test
was simply to initialize the model with the Phillips’ boundary layer velocity and density
profiles. This test was done to see if the flows remained steady for a variety of boundary
layer Reynolds, Richardson, and Prandtl numbers, as well as for different bottom slopes.
The codes passed these simple tests, which were also valuable for determining how many
grid points are required near the wall to adequately resolve the buoyancy driven flows as a
function of the Reynolds number.

The second validation technique involving the Phillips’ solution was a transient test. The
model was initialized with no flow and a linear density gradient extending to the wall.
At time zero the flow was allowed to start from rest by applying the zero-flux boundary
condition (2.50) on the density field. This forced the flow towards the steady state solution.
Parameters for this case areReδ = 13, Rew = 10,000, Riw = 1, Pr = 1, andα = 9.22◦. The
energetics of the transient test are illustrated in Fig. 12. The transient tests indicated that it
took about two buoyancy periods for the boundary layer profiles to overshoot the energy
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FIG. 12. Kinetic, potential, and total energy integrated over the control volume for the transient Phillips’ test.
The steady state values for energy are plotted for comparison.

in the steady solutions. The kinetic energy in the transient case reached about 1.5 times
the kinetic energy of the steady flow before rebounding toward the steady solution. The
transient solution exhibited damped oscillations about the steady solution with a period of
about six buoyancy periods. After approximately 20 buoyancy periods the variations in the
transient solution had decayed, and the flow nearly achieved the steady state predictions.
The magnitude of the oscillations, at the last times in this experiment, were less than 5% of
the energy in the steady solution. For comparison, the wave period of a critical frequency
wave for the bottom slope, 9.2◦, is approximately 6 buoyancy periods. The response time
scale of the buoyancy boundary layer is shorter than the convective or wave propagation
time scales associated with the overall wave reflection process. These results are typical
of tests at different slopes, between 5◦ and 30◦; however, very shallow slopes have slower
response times. The buoyancy boundary layer is restricted to a thin region near the wall,
and the energy density there is much less than that contained in the finite amplitude gravity
waves used in the numerical simulations.

Code validation was also investigated by studying some of the simplest wave reflec-
tion problems, for which linear theory and intuition provide pictures of the flow behavior.
One such case is the reflection of internal waves of small amplitude from a flat bottom.
Here the oncoming wave is expected to reflect from the bottom without changing wave-
length. In addition the interactions between the oncoming and outgoing wave trains are
expected to be minimal, so that they simply add constructively (while passing through
one another). The test was successfully completed. A steady flow was achieved as the on-
coming wave train reflected from the bottom boundary, without changing wavenumber or
frequency, and passed through the incident wave train without event, ultimately progress-
ing into the upper sponge layer where the wave energy was absorbed without significant
reflection.

A fourth test, allowing direct comparison with linear theory, examined vertical spectra of
small amplitude waves reflecting from sloping boundaries. Provided the waves are somewhat
removed from the critical angle, linear theory predicts the vertical wavenumbers of the
reflected waves. Analysis of the energy spectra of the computed flow shows the transfer of
energy to the predicted higher wavenumber. In this way it is straightforward to identify the
energy associated with the oncoming and the reflected wave trains.

The effect of the sloping bottom is to increase the energy density of the reflected wave.
Using linear theory, Phillips (1977) predicts, for the ratio of the reflected to incident wave
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amplitude and energy density, respectively,

Ar

Ai
= cos(α − π + θ)

cos(α + π − θ)
, (4.1)

Er

Ei
=

(
Ar

Ai

)2

. (4.2)

To obtain the wavenumbers of the reflected waves, it is necessary to use linear theory
predictions in the rotated coordinate system(x, z). In the unrotated(xT , zT ) coordinate
system,kTr/mTr = kT i/mT i and

mTr

mT i
= Ar

Ai
= AF , (4.3)

whereAF is the amplification factor. In the rotated coordinate system, however,λxi = λxr ,
or equivalentlykr = ki , and thus all change in wavelength is observed in thez direction.
The ratiomr /mi may be determined by considering the relationships

kT = k cosα − msinα, (4.4)

mT = k sinα + mcosα, (4.5)

k = kT cosα + mT sinα, (4.6)

m = −kT sinα + mT cosα. (4.7)

Algebraic manipulation between the reference frames leads to theresults

mTr

mT i
= kr sinα + mr cosα

ki sinα + mi cosα
= AF , (4.8)

mr

mi
= AF

[
ki sinα + mi cosα

cosα

]
− ki sinα

cosα
, (4.9)

kr

ki
= 1. (4.10)

Figure 13 shows the vertical kinetic energy spectra for a small amplitude wave train, with
amplitude approximatelyA= A0/30 (whereA0 is the amplitude of an overturning wave)
and frequency 0.16, which has reflected from a bottom slope of 5◦. This case was run at

FIG. 13. Kinetic energy spectra in the vertical direction for a linear amplitude wave train reflecting from a
sloping boundary with a no-slip boundary condition.
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Re= 2350 with a no-slip bottom boundary condition, and (at the time shown) reached a
quasi-steady state. Here the oncoming wave train has a wavenumbermi of 5, and linear
theory predicts an amplification factorAF = 3.3 with a reflected wavenumbermr (in thez-
direction) of 17.1 for the inviscid case. Note that the reflected peak contains approximately
twice as much energy as the oncoming wave train, consistent with the linear (inviscid)
relationships, even though significant dissipation has occurred in the model. The results are
thus in reasonable agreement with predictions. Experiments with somewhat larger amplitude
linear wave reflection (Slinn, 1995) show the development of an intermediate peak at a
wavenumber of approximately 11.5 that appearsto be related to resonant triad interactions
(Thorpe and Haines, 1987).

To predict flows accurately the numerical model must satisfy the governing physical laws.
The code was checked for internal consistency to ensure that it conserves mass, momentum,
and energy. The conservation of mass for an incompressible flow is represented by the con-
tinuity equation∇ ·u = 0. Two measures of the divergence of the flow are monitored during
the simulations: local and global divergence. The global divergence criterion in the three-
dimensional model compares the volume integrals of

∫
V ( ∂u

∂x + ∂v
∂y )2 dV and−∫

V ( ∂w
∂z )2 dV.

For all of the experimental results the global divergence is negligible. Typically the ratio of∫
V (∂u/∂x + ∂v/∂y)2 + (∂w/∂z)2 dV∫

V (∂w/∂z)2 dV
(4.11)

is less than 1/104 during periods of strong turbulence. At the beginning of the simulations
when the flow is laminar and the waves are approaching the wall, the flow is incompressible
to one part in 105, approximately the same magnitude as roundoff errors in single precision
calculations.

The local divergence criterion is a normalized measure that gives the magnitude and
location of the largest divergence in the model. The maximum of the local divergence is
normalized by the mean shear at each vertical level,z, e.g.,

∂u

∂x
(z) = 1

Lx L y

( ∫
A

(
∂u

∂x

)2

dx dy

)1/2

(z), (4.12)

and is calculated by∇ ·u/ ∂u
∂x . For a large number of simulations the largest local divergence

consistently occurred near the wall. Usually this occurred at the third or fourth grid point
from the wall, in the region where1x is three to five times larger than1z (associated
with the variable grid). A typical maximum local divergence is about 1%. The fact that the
divergence is small and is located in a region where it might be expected (because special
treatment is used to resolve strong gradients in thez direction) builds confidence in the
accuracy of the model results. The model conserves mass to acceptable tolerances.

Every simulation provides information about the balance of energy for the flow. All of the
terms of the kinetic, potential, and total energy equations are calculated at each tenth time
step during the simulations. The terms are summed and graphed to ensure that energy is
conserved. The energy balance requirement is a more severe test of the accuracy of the model
than either conservation of mass or momentum, because the energy terms are calculated
using higher-order spatial derivatives. The kinetic energy balance is shown in Fig. 14 for a
turbulent wave reflection experiment with Reynolds and Richardson numbers (based upon
the wavelength and maximum current speed of the oncoming wave) ofRe= 1100 and
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FIG. 14. Kinetic energy balance for a turbulent wave breakdown case, showing the degree of energy conser-
vation in the model. Terms are labelled as work input (W), bouyancy flux(Bf ), time rate of change of energy
(Et ), balance (B), sponge flux(Sf ), dissipation rates (ε andχ ), and filter losses (F).

Ri= 110. In this casePr = 1 and the bottom slope and angle of wave propagation are equal,
α = θ = 20◦, so that this is a critical angle experiment. The energy conservation illustrated in
Fig. 14 is typical for the turbulent simulations. The largest terms in the energy equations are
the input of work (W) and the dissipation of energy (ε andχ ). For the kinetic and potential
energy equations, the buoyancy flux(Bf ) is also quite large and oscillates throughout the
simulation.

The sum of all of the energy terms would yield a balance term(B′) that is approximately
equal to zero. It was preferable not to plot the balance termB′ near the zero line because it
was difficult to distinguish from other small energy terms, such as the fluxes of energy into
the sponge layer. Therefore we chose to plot the sum of all of the energy terms except for
the work input, and show it by a balance curve (B), which should be equal to the work input
(W) curve when energy is conserved. Kinetic, potential, and total energy are conserved to
a high degree of accuracy.

The last type of internal consistency check is comparison between the two- and three-
dimensional models. Some of the three-dimensional calculations were repeated in two
dimensions to provide a comparison, to study the three-dimensional characteristics of the
flow, and to check relationships between accuracy and resolution. The two-dimensional
simulations were typically well-resolved at grid resolutions of 201× 400.

Additional code validation comes from comparison with laboratory experiments of simi-
lar flows. Cacchione and Wunsch (1974), Taylor (1993), and Ivey and Nokes (1989) have
studied the critical angle reflection. There were some features of their laboratory setup that
are not exactly duplicated by the numerical model. One difference is the method of wave
generation. The model uses an oncoming wave train, whereas (because of the tank geometry)
the laboratory experiments used a mode-one internal wave that has vertical wavelength
equal to the depth of the fluid. The laboratory experiments were also conducted at somewhat
higher Reynolds and Richardson numbers than attainable with direct numerical simulations,
although both were well within the range for turbulent wave breakdown to occur.

Close agreement exists between the laboratory and numerical experiments in the cases
where similar experiments are available (Slinn, 1995). The two flows go through the same
quasi-periodic behavior, with qualitatively similar flow features developing at each stage of
the cycle. This builds confidence for additional numerical results for which no laboratory
experiments have been conducted. The numerical experiments have the advantage of being
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FIG. 15. Horizontal energy spectrum from a three-dimensional calculation as a function of horizontal
wavenumbersk (or l ). There are 6 energy curves in the figure, three energy spectra decomposed in thex-direction,
labeled 5x, 10x, and 20x, and three energy spectra decomposed in they-direction, labeled 5y, 10y, and 20y. They
are at heightsz= 0.019, 0.052, and 0.15, respectively, corresponding to the 5th, 10th and 20th grid points from
the bottom boundary. Also shown is a reference line with a slope ofk−5/3.

able to study cases not accessible to laboratory experiments. For example, small bottom
slopes (which are common in oceanic applications) have been difficult to simulate in the
laboratory.

The final code validation method to be discussed is a check of numerical accuracy. When
a direct numerical simulation is resolved satisfactorily, it gives the correct solution; e.g.,
increasing the resolution significantly and repeating the simulation does not alter the results
materially. A standard method to determine if a simulation is resolved satisfactorily is to
examine the energy spectra. A well-resolved spectra will contain significantly less energy at
higher wave numbers (small scales) than at the low wave numbers (large, energy-containing
scales). A rule-of-thumb for the DNS of turbulence is that the energy level at the largest
scales should be approximately three orders of magnitude higher than that at the smallest
scales of motion.

The average horizontal energy spectra on three differentx-y planes are shown in Fig. 15
from an experiment with parametersα = θ = 30◦, Re= 1700, Ri = 138. Each of the spectra
is taken in the turbulent boundary layer region, att = 79.5 (five wave periods after startup) at
distances from the wall ofz= 0.019, 0.052, and 0.15λz, respectively. At this stage the flow
has reached a quasi-steady turbulent state. The horizontal spectrum gives a good measure
of the resolution of the simulation, without adding the complication of interpreting the
spectrum on the variable grid. The flow was computed on a 128× 128× 130 grid; therefore,
the highest horizontal wavenumber on the mesh is 64. The region of wavenumber space
abovek = 40 is strongly influenced by the removal of energy by the compact filtering.
Also shown is a reference line with a slope ofk−5/3. The aspect ratio1x/1y = 1.1 is
very close to one; therefore, the spectra in thex- andy-directions are considered together.
Figure 15 indicates that the flow was well-resolved with a strong roll-off of energy at
higher wavenumbers. There are approximately four orders of magnitude more energy in
wavenumbers between 1–5 than in wavenumbers between 20–30 which are not significantly
affected by the compact filter.

The overall consistency of the validation tests (with linear theory, comparison with labo-
ratory data, conservation properties, and internal numerical tests), together with the physical
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FIG. 16. Density fields in anx-z plane in the near wall region for critically reflecting internal waves from a
bottom slope of 30◦.

coherence of the results, Slinn and Riley (1996, 1998a, 1998b), allows confidence that the
model accurately represents the fundamental physics of the flows.

4.2. Critical Reflection Experiment

Throughout the remainder of this section, the capabilities of the model are illustrated as
concepts about wave reflection and boundary layer development and are examined from a
numerical simulation. The bottom slope in this experiment isα = 30◦, Re= 1000, Ri= 108,
andPr = 1. The fundamental frequency of the oncoming wave(ω = 0.5) is chosen so that,
upon the wave’s reflection, the angle of the group velocity vector to the horizontal matches
the bottom slope,i.e., the wave is at the critical angle. It is representative of cases where
transition to turbulence occurs during wave breakdown. Figure 16 shows isopycnals from
a two-dimensional cross-section from the experiment in the near wall region att = 55 and
66, where time is nondimensionalized by the buoyancy frequency,N, the wave period is
12.56, and the buoyancy period is 2π . The oncoming wave train is of moderate amplitude
and regions of wave overturning and strong density gradient have developed near the bottom
boundary. Here an arbitrary constant background density fieldρ0 = 10 has been added to the
mean density gradient and fluctuations, consistent with the Boussinesq approximation. Only
the lower portion of the computational domain to a height of 1.2λz is shown in the figure
(the full domain is 3λz high), thus emphasizing the near-wall region. The dimensions are
normalized byλz and there are two horizontal wavelengths in thex-direction,λx = 0.577λz.
The model is periodic in they-direction with the width of the domain set atL y = 0.6λz.

By time t = 30, the wave train has reached the wall, and a strong gradient in density
has formed. This feature, called a thermal front by Thorpe (1992), moves upslope at the
x component of the phase speed of the oncoming wave. As time progresses, wave over-
turning develops in the lee of the thermal front, and at timet = 55, statically unstable fluid
is apparent. As time continues, the overturned regions break down into small-scale turbu-
lence and dissipate the wave energy in a three-dimensional fashion. Here the flow appears
to be quasi-steady, with a locally turbulent region of statically unstable fluid moving up-
slope together with the thermal front. This result supports the observations of Ivey and



            

590 SLINN AND RILEY

FIG. 17. Velocity vectors in these planes att = 55 and 66: thex-z plane located aty = 0.3λz (top), thex-y
plane parallel to the bottom slope at a heightz= 0.103λz, and they-z plane located atx = 0.577λz (bottom).

Nokes (1989), who conducted a related experiment in the laboratory over a 30◦ slope. They
describe a turbulent bore that passed through the boundary layer each wave period. For
example, note that att = 55 and 66 there are distinct stratified regions between the two
bores.

The previous figures have indicated the structure of the flow in only one vertical plane.
Next we examine aspects of the three-dimensional nature of the flow during wave breakdown
into turbulence. Velocity vectors in three different planes are presented in Fig. 17 att = 55
and 66. The top panels of Fig. 17 show velocity vectors in the same planes as the density
fields in Fig. 16. These velocity vectors are plotted on a subset of the grid locations to enhance
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FIG. 18. Mean velocity profiles̄u(z) at different times for the same experiment shown in Figs. 16 and 17 for
critically reflecting internal waves with a bottom slope of 30◦.

visibility. A reference vector with magnitude|u| = 0.12 is plotted outside the domains to
indicate the velocity scales. The flow appears qualitatively similar at the two times shown
indicative of the fairly steady turbulent flow. Strong currents converge in the region of the
turbulent bore and create a strong region of local mixing and dissipation in the boundary
layer. The shear of the oncoming wave is evident in the upper portions of the domain and
merges into the bore region as an integral part of the dynamics occurring there. The bore
might be termed the “turn around” zone for the internal wave, where the downward moving
fluid and upward moving fluid change direction as the plane wave is interrupted by the wall.
Between the two turbulent regions a region of downslope flow occurs very near the wall
across most of the breadth of the domain (Fig. 18).

In the middle panels of Fig. 17 the velocity components are shown in anx-yplane parallel
to the sloping bottom plane at a distance from the wall ofz= 0.103λz. The vectors appear
to indicate a divergent flow because they show only the components of velocity in thex-y
plane and do not include thew component. Several distinct horizontal structures are apparent
in the flow. The observed variability in they-direction is an indication of the importance of
the three-dimensionality of the wave breakdown process. If regions of high variability of
thev component are compared with the density fields of Fig. 16, then the strongest three-
dimensionalities are seen to occur at (and move with) the location of the thermal front. The
bottom panels of Fig. 17 show the velocity vectors in ay-zplane located atx = 0.577λz.
Here the recirculation in the boundary layer is evident.
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The localization of the turbulence appears to be related to the geometry of the problem,
particularly the aspect ratio of the horizontal and vertical wavelengths of the oncoming
wave, and to the steepness of the bottom slope. Turbulent patches develop initially above
the location of the thermal front and have a characteristic thickness of approximatelyλz/3.
After the turbulence is formed it then appears to favor horizontal spreading. The steep slope
effectively partitions the boundary layer into regions above and below the turbulent bore
and helps to confine the turbulence to a localized region. The fluid in the boundary layer
above (ahead) and below (behind) the bore are somewhat insulated from the turbulence by
the stratification.

Mean alongslope velocity profiles̄u(z) are plotted as a function of perpendicular distance
from the wall in Fig. 18. The top panel shows the domain to a height of 2.4λz while the
bottom panel shows only the bottom portion of the domain to a height of 0.12λz. At t = 23
the oncoming wave train has not yet reached the bottom boundary and the velocity profile
reflects the steady laminar boundary currents induced by diffusion of the density field at the
wall as predicted by Phillips (1970). At later times, after wave breakdown has commenced
the average velocity profiles are similar to one another illustrating the quasi-steady nature
of the flow. A consistent feature in the profiles is a thin viscous layer of downslope flow
located near the wall at heightsz< 0.025 which is resolved by approximately ten grid
points (at locations of symbols). Three-dimensionality is strongly inhibited in this layer by
the presence of the wall due to viscous effects. This feature does not develop for bottom
slopesα < 20◦ and appears to be a mechanism for restratification coupled to the wave
breakdown in the bore.

Volume averages of kinetic, potential, and total energies are shown in Fig. 19. The on-
coming gravity waves have equipartition of energy (i.e., equal kinetic and potential energy).
Also shown in Fig. 19 is the time integrated buoyancy fluxB̄f ; its negative value indicates
a net transfer of potential to kinetic energy. After aboutt = 40 the energy input from the
wave forcing mechanism nearly equals the dissipation of energy and the total energy in the
system levels off and the system reaches quasi-equilibrium.

Volume integrals of the various terms of the kinetic and total energy equations (3.73)
and (3.75) are shown in Fig. 20 as a function of time on an average, per unit volume, basis.
After approximatelyt = 50 the energetics of the flow develop in a quasi-steady manner.
The bottom panel of Fig. 20 shows the terms in the total energy equation. The dominant

FIG. 19. Volume integrals of kinetic, potential, and total energy and the time integrated buoyancy fluxB̄f for
the 30◦ critical angle experiment.
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FIG. 20. Volume integrals of terms in the kinetic (top) and (total) energy equation, (3.79) and (3.81): work
input (W), rate of change of energy(Et ), dissipation rates (ε andχ ), filter dissipation (F), buoyancy flux(Bf ),
flux of energy out of the control volume(Sf ), and balance (B).

terms are the work input and loss of energy by turbulent dissipation. The net result is a near
constant balance between these major terms.

The terms of the kinetic energy equation show more details of the flow development.
A dominant feature is the rapid oscillation of the buoyancy flux. Associated with this is
the time rate of change of kinetic energy, which follows the buoyancy flux closely. The
oscillations in the buoyancy flux occur at approximately the buoyancy period of 2π . For
example, there are 15 maxima and minima in the buoyancy flux betweent = 50 tot = 140,
or approximately one per buoyancy period. While not all maxima have the same magnitude,
the consistent pattern suggests that oscillations at the buoyancy frequency are a dominant
feature of the energetics of the flow.

The work input of kinetic energy achieves a fairly steady value of about 2× 10−4. Oscil-
lations in work input begin at about(t ≈ 70) and may be attributed to the superposition of
incoming and outgoing energy, modulating the local velocity field in the forcing region and
hence the work input, which is the product of the local velocity and forcing terms (3.71).
This does not, however, change the amplitude of the downward directed wave train.

The balance of kinetic energy is very good (B andW are indistinguishable in Fig. 20);
typically the errors are less than 1%. This small error may also be attributed to different
integration techniques. A simple method of integration was used for the energy rate terms,
based upon summation of the grid values for the velocities, weighted by the local volume of
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the variable grid. It was found later that the use of a more sophisticated numerical integration
method, such as the trapezoidal or Simpson’s rule, could also alter some of the integrals by
approximately 1%. The general conclusion is that the energy balance is very good, and the
individual terms are representative of the energetics in the fluid.

The dissipation rates in Fig. 20 appear as negative quantities, meaning a loss of kinetic
or total energy. The loss of kinetic energy by the compact filter subgrid-scale model has
been separated from the resolved dissipation. Comparison of these magnitudes shows that
most of the dissipation has been resolved. Time integration of the losses of energy shows
that, on a 129× 65× 130 grid, 92% of the kinetic energy dissipation has occurred through
ε at well resolved scales and 8% of the kinetic energy dissipation has been accomplished
by the subgrid-scale filter.

Figure 21 plots gray scale contours of the dissipation Reynolds number,Red = ε/νN2,
in the same three planes as Fig. 17 att = 55. The main point of the figure is that nearly
all of the dissipation occurs in the turbulent boundary layer, in an inhomogeneous fashion.
Ivey and Nokes (1989) have usedRed to predict transition to turbulence. They suggest that
for Red = ε/νN2 > 10 there may be a universal transition point for stratified turbulence.
The streaks nearest the wall, seen in the top frame of Fig. 21, haveRed > 500, while
the core of the turbulent bore has regions withRed ≈ 100. The bottom two frames of
Fig. 21, illustrating a top view and an end view, show the three-dimensional structure of the
turbulence. While the average values of the dissipation rate are somewhat uniform in they-
direction, the contours of dissipation rate are comprised of strong streaks indicative of local
variability.

The strongest dissipation occurs in the viscous sublayer forz< 0.01λz. Horizontally
averaged dissipation rates are plotted as a function ofz in Fig. 22. Vertical integration of
the dissipation rates indicate that approximately 40% of the total wave energy dissipation
occurs in the viscous layer near the wall (39% at well resolved length scales and 1% from
the filter) for this flow atRE= 1000. At higher Reynolds numbers the contribution to the
total dissipation rate from the viscous layer decreases significantly while remaining well
resolved, for example, atRe= 2000 the contribution to the total dissiption rate from the
viscous layer is approximately 20% (19% resolved, 1% filter). The spatial inhomogeneity of
the flow makes it difficult to determine the appropriate average dissipation rate for estimating
a totalRed for the turbulent boundary layer. Ifε is averaged just in the core of the turbulent
bore, thenRed ≈ 30. If, however,ε is spatially averaged across the boundary layer, to a
height ofz= λz/4 thenRed ≈ 7.

Finally, results from releasing a passive “dye” in the near wall region are shown in
Fig. 23. The initial concentration,C, at t = 0, of the dye near the boundary isC = 1.0 for
z< 0.15λz, falling off between 0.15λz < z< 0.3λz, andC = 0 for z ≥ 0.3λz. As mixing
occurs in the turbulent layer the concentration of dye near the wall decreases. Contour levels
of 0< C < 0.5 are plotted in Fig. 23 att = 0, 76, and 144. A horizontal intrusion of dye is
observed to steadily work its way into the interior domain, approximately following surfaces
of constant density. Att = 144 two distinct horizontal dye layers are evident located at
zT ≈ 0.5λz andzT ≈ 0.8λz. Thus byt = 144, approximately nine wave periods after mixing
begins, the dye is present in a layer approximately twice as thick as when initially released.
The important point revealed by the motion of the dye is that there is a slow circulation driven
by buoyancy forces as fluid is mixed in the boundary layer. We conclude that the net effects
of boundary mixing are not confined to the boundary layer region but are communicated
horizontally to the interior stratified fluid.
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FIG. 21. Kinetic energy dissipation rate normalized byνN2 in these planes att = 55: thex-z plane located
by y = 0.3λz (top), thex-y plane parallel to the bottom slope at a heightz= 0.103λz, and they-z plane located at
x = 0.577λz (bottom).

Results from the 30◦ critical angle experiment have provided an example of how the
model performs for the internal wave reflection problem at a moderate Reynolds number.
We have observed that the oncoming waves transition to turbulence in a boundary layer of
approximate thicknessλz/3 as it reflects from the bottom wall. The turbulence is localized
and moves upslope at thex-component of the phase speed of the oncoming wave. A quasi-
steady flow develops in which the oncoming wave energy is dissipated near the wall while
mixing the fluid in the boundary layer.
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FIG. 22. Average kinetic energy dissipation rate ¯ε(z) at different times for the same experiment shown in
Figs. 16–21 for critically reflecting internal waves with a bottom slope of 30◦.

5. SUMMARY

We have presented a new three-dimensional Navier–Stokes solver for direct numerical
and large eddy simulations of a turbulent boundary layer in a stratified fluid subject to the
Boussinesq approximation. The model was designed to study the problem of internal wave
reflection from sloping boundaries that can result in wave breakdown into a turbulent bound-
ary layer. Internal waves are generated by a new method that forces moderate amplitude
monochromatic oncoming waves at specified wavelengths and frequencies. An analytic
solutionhas been presented for the wave forcing mechanism that predicts properties of the
resulting forced wave. It was found that the vertical extent of the forcing region should be
greater than or equal to the vertical wavelength of the desired monochromatic wave train to
yield satisfactory results.

The model is periodic in two dimensions and in the third dimension employs a wave
absorbing layer at the upper surface and a solid sloping surface at the bottom boundary. The
equations of fluid motion are solved in a rotated coordinate system aligned with the sloping
bottom topography. Boundary currents that arise in a stratified fluid over slopes (Phillips,
1970) balancing mass diffusion with upslope convection have been included in the model
initialization.

The combination of numerical techniques in the model make it generally robust and
well suited for application to boundary layer and other wave propagation problems. The
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FIG. 23. Dye field concentrations att = 1, 76, and 144.

time discretization scheme is a third-order Adams–Bashforth realization of the projection
method. Greater efficiency is introduced by using a variable time-stepping scheme that
allows the time step to be adjusted, based upon results from the combined temporal and
spatial numerical stability analysis. The spatial discretization in the model uses compact
finite differencing techniques (Lele, 1992), which have near spectral accuracy in their ability
to resolve a wide range of wavenumbers with minimal phase errors. A variable-mesh grid is
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used to cluster computational nodes near the physical boundary at the sea bed. The variable
grid is mapped onto a uniform grid in computational space by an algebraic relationship.
Calculations on grids of up to 129×129×130 ('2.1 million) points have been conducted,
and the model achieves significant efficiencies through vectorization and parallelization. The
pressure field is determined to fourth-order accuracy by taking advantage of the periodicities
in the problem and by decoupling the directional dependencies of the pressure field in Fourier
wave number space to allow gains from both vectorization and direct matrix inversion of
the pressure coefficients.

In the gravity wave reflection flow, the main interactions that occur are at large scales and
can be well resolved. Numerical experiments have been conducted at Reynolds numbers
500< Re< 5,000. For the majority of the experiments, at a moderately low Reynolds num-
ber (e.g.,Re< 2500), the model represents a direct numerical simulation of the boundary
layer. At a higher Reynolds number attention is focused on the large scales of motions and
the manner in which energy is transferred to the intermediate-scale motions; phenomena at
smaller, dissipative scales are parameterized. For approximatelyRe> 2500 the model may
be considered a large eddy simulation (LES) of the flow, with an additional hyperviscosity
filter (∇4u) used to dissipate excess energy from the subgrid scales of motion.

The utility of the model has been examined in a number of simplified test problems as well
as for internal wave reflection from sloping topography. Results of numerical simulations
have shown good agreement with theory and laboratory studies. New insights into the
physics of the gravity wave reflection problem have been revealed through these numerical
simulations. The model is generally robust and the combination of numerical techniques it
employs make it well suited for application to boundary layer problems.

APPENDIX A: ANALYTIC SOLUTION FOR FORCING

In Subsection 2.4 the forced response for a numerical solution was determined for the
equations

A′′′
f (z) + 4m2A′

f (z) = − A

ωk
F ′′′(z) + 2A(k2 − m2)

ωk
F ′(z) (A1)

B′′′
f (z) + 4m2B′

f (z) = 4Am

ωk
(k2 + m2)F(z) (A2)

for F(z) = exp[−b(z − z0)
2]. Here we present an analytic solution forBf and Af when

F(z) = sin2 (z) on the interval 0≤ z ≤ π . Three boundary conditions onBf (z) are used:
atz= 0, Bf = 0 andB′

f = 0, and atz= π, B′
f = 0. The same boundary conditions are used

for Af (z). The solutions are

Af (z) = A(2 + k2 − m2)

4ωk(1 − m2)
[cos(2z) − 1], (A3)

Bf (z) = 4Am

ωk
(k2 + m2)

[ −sin2(mπ)

8m3 sin(2mπ)(1 − m2)
+ sin(mπ) cos(2mz)

8m2 sin(2mπ)(1 − m2)

− sin(2mz)

16m3(1 − m2)
+ z

8m2
+ sin(2z)

16(1 − m2)

]
. (A4)

A f , Bf , andF are plotted in Fig. 24 for two different values ofA, k, m, andω. Here the
forced wave propagates upward, to increasing values ofz.
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FIG. 24. Shape functions forAf and Bf , from (A3) and (A4) with parametersA= 0.15, k = 1.80, m
= 3.33, ω = 0.474 (top); andA= 0.08, k = 0.90, m= 1.43, ω = 0.532 (top).

The resulting shape functionBf is not sensitive to the ratio2π
m /L F in the same manner

as were the results forF(z) = exp[−b(z− z0)
2]. Here the results are sufficiently smooth

outside the forcing region so long as 1−m2 does not approach zero at which value the solution
contains a singularity. The sensitivity ofBf (z) on 2π

m /L F for F(z) = exp[−b(z−z0)
2] may

be caused by the frequency content of exp[−b(z − z0)
2] which contains an infinite series

of sine waves each containing singularities at different values ofm.
We note, however, that forF(z) = sin2 (z), the resulting shape ofBf responds differently

within the forcing region when either(1− m2) or (2+ k2 − m2) change sign, which causes
A f to change sign also. For the case whenAf and Bf are of opposite sign (top panel of
Fig. 24) the forced waves grow continuously. WhenAf andBf are both positive (bottom
panel)Bf decreases in the center of the forcing region.

APPENDIX B: COMPACT FILTERING ON VARIABLE GRID

It was shown in Subsection 3.2 that the filtered field can be obtained on the uniform grid
by (3.14)

0.4ǔi −1 + ǔi + 0.4ǔi +1 = 0.4ui −1 + ui + 0.4ui +1

− 1

80
(ui +2 − 4ui +1 + 6ui − 4ui −1 + ui −2), (B1)
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which is equivalent to writing

0.4ǔi −1 + ǔi + 0.4ǔi +1 = 0.4ui −1 + ui + 0.4ui +1 − 1

5
(1x)4 ∂4u

∂x4

∣∣∣∣
i

. (B2)

In the discussion on grid metrics in Subsection 3.5 the equivalent expression for the fourth
derivative is given by (3.52)

∂4u

∂z4
=04

1(ζ )
∂4u

∂ζ 4
+ 602

1(ζ )02(ζ )
∂3u

∂ζ 3
+ [

401(ζ )03(ζ ) + 302
2(ζ )

]∂2u

∂ζ 2
+ 04(ζ )

∂u

∂ζ
, (B3)

where01–04 are given above in Subsection 3.6. Combining Eqs. (B2) and (B3) yields the
fourth-order compact filter on the clustered grid

0.4ǔi −1 + ǔi + 0.4ǔi +1 = 0.4ui −1 + ui + 0.4ui +1

− 1

80
(ui +2 − 4ui +1 + 6ui − 4ui −1 + ui −2)

− 1ζ

80

(
602

02
1

)
i

(
ui +2 − 2ui +1 + 2ui −1 − ui −2

2

)
− 1ζ 2

80

(
403

03
1

+ 302
2

04
1

)
i

(ui +1 − 2ui + ui −1)

− 1ζ 3

80

(
04

04
1

)
i

(
ui +1 − ui −1

2

)
. (B4)
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