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A model with several original physical and numerical features has been developed
for direct numerical and large eddy simulations of a turbulent boundary layer in a
stratified fluid. The large scale flow for which the model was developed involves in-
ternal waves reflecting from a sloping boundary. In the model, the internal waves are
generated by a new technique that forces monochromatic waves at specified wave-
lengths and frequencies. A new analytic solution has been obtained representative
of the forcing conditions. In the model, time discretization is based upon the pro-
jection method incorporating a third-order Adams—Bashforth scheme with variable
time steps, and spatial discretization employs fourth-order compact differencing tech-
niques on a variable grid that increases resolution close to the boundary. The model
is periodic in two dimensions and in the third dimension employs an open boundary
and a solid sloping surface. The pressure field is determined using a fast direct so-
lution method of fourth-order accuracy. The model includes flow analysis aids such
as tracking Lagrangian particles and advected scalar quantities. Flow measurements
are made of the integrated kinetic and potential energy balances, local dissipation
rates, and the energy spectra. The utility of the model is examined in a number of
test problems. It appears that the model is well suited for simulations of transitioning
and turbulent boundary layersg 1998 Academic Press

1. INTRODUCTION

A number of important fluid flows involve turbulent boundary layers. Such boundz
layers are among the most difficult types of flows to compute because they contain a
range of spatial and temporal scales. Spatadl. (1991) were first to develop a Navier—
Stokes solver for the direct numerical simulation (DNS) of a turbulent boundary layer. Tt
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SIMULATION OF TURBULENT BOUNDARY LAYERS 551

model employed a semi-infinite, doubly periodic domain utilizing spectral basis functic
to examine the dynamics of a constant density fluid. Rai and Moin (1993) simulate
spatially evolving boundary layer over a flat plate using a finite difference scheme. In
paper we describe a model for the direct numerical simulation of transitioning and turbu
boundary layers in a stratified (i.e., variable density) incompressible fluid.

Our model was designed to study the problem of internal wave reflection from slof
boundaries. When an internal gravity wave reflects from a sloping boundary, the wa
energy density and amplitude may increase significantly, especially if the angle of p
agation of the wave is close to the angle of the bottom slope. The reflection can rest
wave breakdown into a turbulent layer near the boundary, a process thought to make a
contribution to vertical mixing in the ocean (Eriksen, 1998). To model this process, we h
developed a new method for generating a monochromatic oncoming train of internal gre
waves of specified wavelength and frequency. Also, an analytic solution is developed fo
wave forcing mechanism that predicts properties of the resulting forced wave. We pre
results from experiments of internal wave reflection from sloping boundaries in which fl
near the the boundary transitions to turbulence.

Several recent advances in numerical techniques are incorporated into the model, \
solves the three-dimensional Navier—Stokes equations for a stratified flow subject tc
Boussinesq approximation. High resolution is achieved in the near-wall region by utiliz
a variable or clustered grid in physical space, with an increasing density of computati
points near the boundary. The variable grid is mapped onto a uniform grid in computati
space by an analytic function. The spatial discretization in the model uses compact fi
differencing techniques (Lele, 1992), which have near-spectral accuracy in their ab
to resolve a wide range of wavenumbers. This is especially important in accurately t
ing wave propagation. The time discretization scheme incorporates the pressure proje
method (e.g., Karniadaket al., 1991) with a third-order Adams—Bashforth time-steppin
scheme that recalculates a stable time step during the time integration in order to achie\
timum use of computational resources. The model has periodic boundary conditions ir
directions and employs an open boundary condition at the top boundary and a solid su
atthe bottom boundary. A fast direct pressure solution method has been implemented, v
takes advantage of the periodicity of the problem. The code has been optimized for vectc
parallel processor computers and is used with grid resolutions of approximatélgri@8
points.

The basic mathematical model and the model problem to be studied are describ
Section 2, and the numerical methods are described in detail in Section 3. Section 4 pre
simulation results from a number of test problems, and Section 5 contains the summan
conclusions.

2. INCOMPRESSIBLE STRATIFIED FLOW MODEL

Considering forced, dissipative, incompressible flow within the Boussinesq approxi
tion (Phillips, 1977), the conservation equations for mass, momentum, and internal er
(or, salinity for a liquid) are, respectively,
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Equations (2.1)—(2.3) are five equations for the five unknowas({, v, ), p, and
0, where the ~ represents a dimensional quantity. Here the fluid velocity,g is the
gravitational acceleratiorf is the perturbation pressure fiefd= (X, ¥, 2) is the Cartesian
coordinate system with unit vectoe= (i, |, k) (whereZ is in the vertical directiony is the
fluctuating density fieldyp, is the constant background density, %‘;—dis the background
density stratification (assumed here to be constant), which will be negative in all c:
considered in this work (i.e., density i mcreasmg with depth in the ocean or decreasing
height in the atmosphere.) A body forg = (Fu, F,, F,) is applied to the momentum
equation, and the density field is forced wl%la. The parameters andx are coefficients
of diffusion of momentum and density.

Density fluctuations and stratification are considered small comparedpyith the
Boussinesq approximation. The total density and pressure fields may be written

- dp
Pt _Po‘i‘Tz‘f‘Pv (2.4)
Pt = Po + P. (2.5)

Here, py is a reference state in hydrostatic balance with the background density field in
Boussinesq approximation, e.g.,

Po s

=— Z 2.6
dz PoQ (2.6)
In the Boussinesq approximatios p, g Z| > | dpz gZ|, so hydrostatic balance is only bet-
ween pressure and the background density field to the order of the approximation.
hydrostatic balance has already been removed from (2.2), which is written in term:
pressure and density fluctuations.

The governing equations may be nondimensionalized as
t p p

%
u= —, X=—, t=—— = —, = ——Q,
L P="02  °~Tdpjaz

Cl =

Fu _F,

Fu= e, Fp=— .
YT UL ? 7 Ul|dp/dzZ

(2.7a-2.79)

HereU is the characteristic velocity, is a characteristic (vertical) length scale, pressure
nondimensionalized with the dynamic pressure, and density is nondimensionalized L
the background density gradient. With (2.7), the momentum equation, (2.2), becomes

au 1
— Vu=-Vp-KkRi Vau + Fy. 2.8
8t+u u p-— |,o+Re u+Fy (2.8)

The nondimensional parameters (the Froude, Richardson, Reynolds, Prandtl, and F
numbers) are

U _ /NL\? UL
Fr=— Ri= (—) s Re= —, Pr=—, Pe= RePr,
V
(2.9a—2.9¢)

& | =
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where the buoyancy frequenay, is defined by
—gdp
NZ2=(==2).
< Do dD

V.-u=0.

Using (2.7) in (2.1) gives

The governing equation, (2.3), for the density field becomes

ap

1
u-Vo—w=—V2p+F,
at + Pow=pe Pt

2.1. Problem Geometry

553

(2.10)

(2.11)

(2.12)

The model problem is taken to be periodic in theandy-directions and bounded by a

plane wall at the bottom boundary. To accommodate a sloping ocean floor, itis advantag

to rotate the coordinate system about yhaxis by the angle of the slope, so that thex

axis is directed upslopg,is across-slope, ar@is perpendicular to the slope (Fig. 1). This

rotation complicates some other aspects of the problem. For examplectimponent of
the momentum equation has a component of the gravity force, and the density equ
has the velocity component (in addition tow) multiplying the mean density gradient.

The background density and pressure fields are not periodic at the lateral boundaries
Because the background fields have been subtracted from the governing equations, ho
if the remaining perturbation density and pressure fields are initially periodic irx the

direction, they will remain so.

Wave Forcing
Region periodic

boundary

» Compact Scheme
¢ 3rd Order Adams-Bashforth
¢ Variable Time Stepping

* Pressure Projection Method

Clustered Grid

periodic

boundary
y

FIG. 1. The computational domain and suggestions of some of the key numerical methods utilized ir

model.
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Hereinafter, for conveniencgr andz will be used to designate the true horizontal an
vertical directions, perpendicular and parallel to gravity. Thus, the governing equatic
(2.8), (2.11), and (2.12), for a coordinate system rotated through arayie

Ju dv  Jw
u v g 2.13
X + ay + a0z ( )
au+uau+ auJr au+Ri sin apJr 1 82u+82u+82u L E
— —+tv—+w— a=——+—|S+—=+—= ,
at T ax oy 9z p ax = Re\dax2 ' 9y2  9z2 !

(2.14)
v v v v ap 1(3% %v 9%

_ u—~ — = | — _ _
ot TUax Ty T¥9z2 = Tay TRelae Taye T a2

3w+u8w+ 8w+ aw+Ri oS 8p+ 1 82w+82w+82w LE
- tU - Fv—F+w_— =—=+t |\t 5% ws
ot ax oy 0z P 0z Re\oxZz 9y2 9z2

> +F, (2.15)

(2.16)
9p + uap + 9p + 9p COSa — usin o p O +F
— — +tv— ——w - o= — .
ot ax oy T Vaz PrRe r

ax2 " 9y? | 972
(2.17)

2.2. Initial Conditions

The reflection of internal waves from the ocean floor can be modeled numerically eithe
solving an initial value problem of a downward propagating wave packet (examined in
section), or by creating continuous wave source in the computational domain (Subse
2.3). The initial conditions consist of combinations of three distinct parts: a wave pac
laminar boundary currents, and a background flow consisting of white noise or low le
turbulence. Gravity waves may be initialized by specifying the wave as a perturbed del
field, together with the instantaneous velocities associated with the wave.

The initial value problem in which the flow field is set to represent a wave packet pro
gating downward at angleé with respect to the horizontal, with group veloctf;(J and
wavenumbek = (k, |, m), is presented here following Winters (1989). The analytic e
pression for a wave packet localizedzis determined by seeking a sinusoidal solution t
the linearized non-diffusive governing equations.

ux,y,z0) = —ATmF(z) cogkx+mz — éF/(z) sin(kx +m2), (2.18)
v(X,y,2,0) =0 (2.19)
w(X, Y,z 0 = AF(2) cogkx + m2), (2.20)
p(X,y,2,0) = M sin(kx + m2 + W sin(kx + m2)

- % cogkx + m2). (2.21)

The functionF (2) with derivativeF’(z) has been suggested by Winters (1989) in order
localize the wave packet in the computational domain

F(2) =expl-b(z—-2)°. 0=<z<lL, (2.22)
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where the(x, y, z) dimensions of the domain afey, Ly, L,). The termF’(z) ensures the
non-divergence of the wave packet. To minimize dispersive effects the vertical exter
the wave packet should be somewhat longer than the vertical wavelengthr / m of the
gravity waves. Typical parameters used in the model initialization are

L, W 30 2r 27
-2 A=Y_-0015 b=2, k=L-7T
2" U 3 L2’ w3
2
=0, m= A—” — 2. (2.23a-2.23f)
z

The dispersion relation of the wave packet is given by

, _ Ri(kcosa — msina)?

o= 2 e (2.24)

The phase and group velocities are perpendicular (Phillips, 1977), and their magnitude
related by1C | = |Cph|m/k where

Cpn = m(l((kiosam_z)gzsma) (ki + mk), (2.25)

The wave and buoyancy periods are, respectively,
T, — \/ﬁzr;ng (2.27)
Ty — % (2.28)

A wave with group velocity propagating downward and in the poskieady directions
at angled to the horizontal has wave numbers defined f@mtarrt(m/k) — «. In the
flat bottom caséx = 0) positive values fok andm yield a wave packet that propagates ir
the positivex and negative directions. This is not generally the case for arbitrary angle
For instance, whekcosa — m sin « < 0, positive wavenumbers can lead to a wave pack
propagating in the negativedirection.

Constant density contours of a large amplitude initial wave packet with peak amplit
3%0, whereA is the amplitude of an overturning wave, are shown in Fig. 2. The directi
of propagation of the phase and group velocities are indicated on the figure. Note that
though the waves in this packet are of somewhat large amplitude they are not near the
of incipient breaking (amplitudéy, wheredp;/dzt =0 at the steepest point).

2.3. Mechanical Wave Forcing

A second method to generate incoming waves is to force them continuously from in
the computational domain during the simulation. This is accomplished by utilizing |
forcing terms on the right hand sides of the governing equations. A simplified variat
of this method was introduced Byovell et al (1992). In our model both the velocity and
density fields are locally forced in a manner that generates a monochromatic wave train
specified frequency and wavenumber vector incident upon the sloping terrain. This me
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FIG. 2.

For the initial value problem, density contours are shown of the initial wave packet with amplitu
0.75A,, 3/4 the amplitude of an overturning wave.

offers several advantages over the wave packet approach, such as allowing a longe
for the waves to break down and providing close comparison with laboratory experime
Additional flexibility with the wave source may be gained by using a time dependent forc
amplitudeA(t) without modification.

The forcing functions in the rotated coordinate system are specified using similar relat
to those used for the wave packet, e.g.,

A
Fu —TmF(z) cogkx + mz— wt) — K F'(2) sin(kx + mz— wt), (2.29)
F,=0 (2.30)
F, = AF(2) cogkx + mz— wt), (2.31)
—A F AmsinaF
F, = M sin(kx + mz— wt) + M sin(kx + mz— wt)
w
AsinaF’
— sm+(z) cogkx + mz— wt), (2.32)
w

where the localization functiofr (z) is given by (2.22), but is more strongly localized
(larger b) and centered a8 = 2L ,/3. Experience indicates that choosing the vertical exte
of F(z) equal to the vertical wavelength of the desired monochromatic wave train yie
satisfactory results (Subsection 2.3.1).

The internal wave train is started from rest, and after a short startup period, a quasi-st
flow develops in which a beam of sinusoidal internal waves propagate toward the bof
boundary. Figure 3 shows isopycnals of the waves emerging from the region of wave forc
waves that have grown in amplitude due to interactions with the sloping bottom bound
and wave breakdown beginning to occur.

The forcing functiong-, andF,, may be written in terms analogous to a stream functiol
e.g.,

ow v

=Y g2 2.33a-2.33b
u 9z ax (2332 )



SIMULATION OF TURBULENT BOUNDARY LAYERS 557

FIG. 3. Steady wave forcing showing constant density surfaces of an internal wave propagating down
toward the bottom boundary from the forcing region.

which will be mathematically convenient in the next section. The stream funétiisn

AM)F
v = # sin(kx + mz— wt). (2.34)
2.3.1.Analytic Solution. An analytic solution can be obtained for the wave train the
propagates from the forcing region, obtained by writing the linearized equations of mo
with forcing added and searching for solutions whose time dependence is wavelike
analyze the case with = 0 for simplicity and begin with the linearized system

ou  Jdp oW

Z—__F_77 2.35
ot X a9z ( )
dw . 9p 9V

e~ Rip- 2427, 2.36
ot P~z ax (2.36)
ap

L =wtF. (2.37)

Pressure may be eliminated from the system using a stream functionuwm%’é and
w= —%. Taking the curl of the linearized momentum equations and adding them yiel

ad .dp

— V2 —Ri—— = —V2y, 2.38

ot v IE)x ( )
Density may be eliminated from (2.38) using (2.37) which gives

92 %y B] oF
— V2% + Ri— = ——V?W + Ri—2. 2.39
ot2 v ax2 ot + X ( )
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HereWw andF, are specified by (2.34) and (2.33), wi#fit) = A, a constant; therefore, the
right hand side of (2.39) is

-%[20@ +m?)F(2) — F"(2) cos¢ + 2mF (2) sing], (2.40)

whereg = (Kx + mz— wt).
A solution to the system may be found of the form

¥ = A¢(2) cosp + B (2) sing, (2.41)

for which the entire time dependence of the solution is contained in the wave formgpof s
and cosgp. Substitutingy into (2.40) and equating the sine and cosine parts leads to |
following third-order equations foA; (z) and B (2)

BY(z) +4m?B} (2) = %ﬂ (k2 + m?)F(2) = C1F(2) (2.42)

2AKZ — md)

/ A "
A7 (2) + 4m? A (2) = -~ F'@+ —

F'(z) = CoF"(z) + C3F'(2).
(2.43)

For certain specified forms d%(z) on the interval < z < , such asF (z) = sin?(2),
analytic expressions fol¢ (z) and B¢ (z) can be found. For example, fé7(z) = sin?(2),
the analytic solution is given in Appendix A. For the formefz) used above, however,
a numerical solution of the third-order ordinary differential equations (2.42) and (2.43
obtained by inverting a pentadiagonal matrix representing a finite difference discretize
for the derivatives ofA¢ (z) and B (). The relative magnitudes @, C,, andCs to 4m?
are the important parameters that determine the shape of the solutigng®randB; (z).

The numerical solution is approximated at the interior nodes with fourth and second o
accurate stencils for the derivatives, e.g.,

—Bi;2+8Bi;1—8B_1+ B>

B (2) = 19A7 (2.44)
Bi.> — 2B 2B_1— Bi_
"(2) = i+2 I+;Zzs i—1 -2 (2.45)

Three boundary conditions @ (z) are used, assuming teecomponent of the wave group
velocity is negative: ag — oo, By =0 andB} =0, and az — —oo, B} =0. The same
boundary conditions are used fA% (2). An alternate solution method has also been use
yielding equivalent results, by solving Eq. (2.43) 8} (z), using the method of variation
of parameters, and numerically integrating both the right hand side of the equati&} an
to find Bs.

Figure 4 shows solutions f&; (z) andB+ (2) for the shape function of the forcing region,
F (2), indicated. Heren (the vertical wavenumber) is chosen so that 27 /mis smaller
(A2~ Lg/1.6) than the characteristic length scaldaf), defined by g, which is the width
of F(2) atF (2) = Fnax/10. The solutions indicate that the signal coming out of the forcir
region, B¢ sing, is steady and smooth and confined within the carrier wave envéepe
shown. The envelope’s smoothness is a function of the rat?ﬁpltp. When this ratio is
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0.0005

0.0000

0.0 1.0 2.0 3.0
z

FIG. 4. Signal shape function foA¢ (z) and B; (2) for a broad forcing regioniL = 1.61,) of shapeF (z)
and wavelengti, =0.7.

greaterthan one, such that the forcing region is wider than a vertical wavelength of the fo
wave, then the signal that emerges has the desirable features of being uniform in shay
time. When the forcing region is narrower than a wavelength of the emitted signal, t
the output is modulated by an irregular, non-constant envelope. In Fig. 4 the emitted si
propagates from right to left (downward; (z) represents the shape of the internal wav
train emerging from the forcing region having the sindependenceA; (z) represents
a local disturbance with cosigedependence within the forcing region, which satisfie
the non-divergence criteria required by incompressible floyz) vanishes outside of the
forcing region due to the symmetry 6f(z) when the forcing region is sufficiently broad.

Figures 5 and 6 show solutions for relatively broad and narrow forcing regions defi
by ratios of%/Lf of 1.05 and 0.73. The envelope and signal wavelength are shown t
in comparison with the forcing region width. Figure 5 shows a satisfactorily smooth sig
coming from a broad forcing region, and Fig. 6 shows the modulated signal and enve
coming from a narrower forcing region. These analytic results have been tested by nume
simulations that verify the influence and importance of the width of the wave forcing reg
compared to the vertical wavelength. The main result is that, for satisfactory resolutior
that an unmodulated wave is produced), the forcing region should be wider than a vel
wavelength of the emitted wave.

0.002

Amplitude

0.001

0.000 : . N

0.0 1.0 2.0 3.0
Z

FIG. 5. A marginally broad forcing region, approximately the same width as the vertical wavelength of
emitted wave L = 1.05,), has fairly smooth properties for the shape functiiz). Also shown is the forcing
region, F (z), with height normalized to be of the same scal®as
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B
g i
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F

< 0001} i

0.000 : f .

0.0 1.0 2.0 3.0

Z

FIG. 6. A narrow forcing region, smaller in width than the vertical wavelength of the emitted sine wa
(L =0.73),), leads to oscillations in the shape functiBn(z). Also shown is the forcing regiorf; (z), with
height normalized to be of the same scalBas

2.4. White Noise and Turbulence

The wave packet and wave train described above are two-dimensional (i.e., the onco
wave approaches the wall in the plane of the slope). In this case additional flow feat
are required to break the symmetry of the problem and allow the reflected waves to b
down three-dimensionally. To accomplish this a small amount of white noise is adde
the background flow. Experience has shown that a background noise level that con
roughly one percent of the local energy density of the oncoming wave train is sufficier
allow wave instabilities to develop quickly and cause the waves to break into turbulenc

This white noise is generated by taking the incompressible projection of a pseudo-ran
velocity field localized near the wall. The density field is also initialized with random flu
tuations added to the background profile. These perturbation velocity and density fi
are filtered to remove energy at high wave numbers and then set in motion for about
buoyancy period. This allows the noise field to begin to develop into low level turbuler
containing some coherence. After a short developmental period a wave packet is sup
posed on the background noise field, or the wave forcing is initiated, and the waves b
to propagate toward the wall.

2.5. Boundary Conditions

A periodic domain inx andy, consistent with the periodicity of the oncoming wave
is chosen to simplify boundary conditions at the lateral boundaries. The lateral (perio
boundary conditions are

u,v,w, p, )X, y,z,t) = (U, v, w, p, P)(X+ Ly, y, 2, 1), (2.46a)—(2.46€)
u,v,w, p,p)X,y,z,t) = U, v,w, p, o)X, y+ Ly, z,t). (247a)-(2.47¢e)

No slip boundary conditions are specified at the bottom boundagy0) with
ux,y,0,t) =0, v(X,y,0,t) =0, w(X,y,0,t) =0. (2.48a)—(2.48c)

The bottom boundary condition for density is a no-flux condition, equivalent, in atempe
ture stratified fluid, to an adiabatic boundary condition. In a salt stratified fluid the no-f
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)e

FIG. 7. Isopycnals near a sloping boundary with an adiabatic boundary condition showing secondary cur
generated for a constant interior stratification.

Xr

boundary condition means that there are no sources or sinks of salt at the wall, so th:
salt in the interior flow is conserved. A no-flux wall may be simulated with the conditiol

i

=0 2.49
| =0 (2.49)

b

where, with the nondimensionalization specified abgves p, — z coOsa — X sina + p is
the total density field. In practice (2.49) is written in terms of the normal derivative of t
perturbation density

= COS«, (2.50)

a constant.

Phillips (1970) and Wunsch (1970) have shown that a no-flux boundary condition can
rise to a steady circulation in a density stratified fluid in which mass diffusion is balan
by upslope convection near the boundary. Figure 7 shows the total density contours i
near-wall region for the steady flow, and Fig. 8 illustrates the velocity profile. For typi
experiments conducted in this study, with intermediate bottom slopes (egg 5 30°)
and moderate Reynolds humb&Re~ 1000, the steady profiles develop on time scale
fast compared with wave propagation time scales. Consequently, the flow is initialize
include the fully developed steady laminar profiles, as given by

—cosae Y?cosyz
p(2) = . e (2.51)

u(z)

77 7
o

FIG. 8. Alongslope velocity profiles to maintain steady-state buoyancy boundary currents.
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2y cotae VZsinyz
PrRe ’
w(z) =v(z) =0, (2.53)

u2 =

(2.52)

wherey = (RiPrRé sir? o /4)Y4.

The upper boundary condition is chosen to be a radiative boundary condition, allow
waves to freely propagate out of the computational domain. Its presentation is defe
to Subsection 3.4 (dealing with numerical boundary conditions). This upper bounc
condition is implemented using Rayleigh damping in the top region of the domain.

2.6. Model Summary

Experience with numerical simulation has shown the advisability of solving implicit
for the pressure field, to allow it to adjust instantaneously to the velocity field in suc
manner as to ensure incompressible flow. This approximation of infinitely fast pres:s
waves is warranted for low Mach number (incompressible) flows, since pressure w:
propagate much faster (acoustic speeds) than other adjustments (gravity waves, turbu
in the flow. The governing equation for the pressure is a Poisson equation. It may be de
by taking the divergence of the momentum equation (2.8), summing the components,
using the continuity equation to simplify. The pressure projection method is used to t
the pressure field and is detailed below in Subsection 3.3.

For the three-dimensional model, the system to be solved numerically compr
Egs. (2.13)—(2.17) with the appropriate pressure equation to be presented below, tog
with an appropriate set of boundary conditions from (2.46)—(2.50), upper boundary co
tions to be presented later, and initial conditions from (2.18)—(2.21) and (2.51)—(2.53),
mechanical wave source as given by (2.29)—(2.32).

3. NUMERICAL METHODS

Two numerical codes have been developed in this study, for two-dimensional (2
and three-dimensional (3-D) flows. Numerical methods used in these codes are out
below, primarily in the context of the three-dimensional model. Except where noted,
two-dimensional model uses the same algorithms. The standard resolution for the
dimensional model is 20% 401 grid points; the three-dimensional model uses grid resol
tions of up to 129x 129 x 130 grid points.

The model uses a single spatial grid at which all of the variahies, (w, p, andp) and
their spatial derivatives are determined as recommended byeslaih (1989) using the
fourth-order compact scheme. The nonlinear terms are calculated in advective form,
ug—i. The model conserves mass, momentum, and energy to a high degree of accurac
time marching technique employs an explicit fractional step method in which the pres:
terms are treated separately. Significant model features include a variable time stef
procedure, a variable grid with increased resolution in the boundary layer, an open u
boundary condition, a direct pressure solver, and a number of flow measurement techni

3.1. Spatial Discretization

Velocity and pressure derivatives are calculated using Hermitian compact @rteeld-
nigues, following the work of Hirsh (1975), Adam (1977), and Lele (1992). These meth
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offer improved resolution over traditional finite-difference schemes, and spectral-like
havior in their ability to represent a wide range of wavenumbers accurately. In addit
the compact scheme has minimal phase errors, an important property for wave propac
problems, and may be used in other applications such as spectral-like filtering (Lele, 1¢

The Pa@representation of the first derivative results in a tridiagonal system of the fo

1 4 1 1
§Ux(i+l) + §Uxi + §Ux(i—l) = H(ui+l —Ui—1), (3.1)
where h is the distance between grid points, and the velocity derivatives are writ
ou/aX|i = Uxi. The scheme is called “compact” because it involves relations between
points on a smaller stencil than the standard finite difference formula. The truncation e
for the compact scheme,h“g%h/lSO, is one sixth the truncation error of the standar
Taylor series scheme.

Formal fourth-order accuracy is maintained throughout the numerical model. Sec
derivatives are calculated using the compact representation

5 1 1
Tzuxx(i+1) + 6UXXi + Tzuxx(i—l) = ﬁ(uiﬁ-l —2U; + Uj_1), (3.2)

whered?u/ax?|i = uxxi. The boundary nodes for first- and second-derivatives require s
cial treatment and will be described below.

Itis well known that boundary schemes may be one order less accurate than an interic
main scheme without degrading the overall accuracy of the interior difference scheme {
Kreiss, 1972). Third-order accurate boundary schemes for Dirichlet boundary condit
(u is specified at the boundary) are suggested by Adam (1977),

1
2Uy1 + Uy = H(—SU]_ + 4uy + U3), (33)
1
4uyo + 2Uy3 = ﬁ(_ul — 4u; + 5u3), (3.4)
1
2L»|x(m—2) + 4Ux(m—l) = E(_Sum—Z + 4LIm—l + Um)’ (35)
1
4Uyxm-1) + 2Uxm = H(_Um—z — 4Um_1 + 5Um), (3.6)

wherei =m represents the last (maximum) grid point. The resulting tridiagonal mat
is computationally inexpensive to solve. When von Neumann boundary conditions
specified (the normal derivativéu/dn is given on the boundary) the tridiagonal matrix
is simplified, with all off diagonal elements equated to zero at the boundary by set
Uyx1 =0au/on.

For the second derivative Lele (1992) suggests a third-order boundary condition com
ble with the compact scheme for Dirichlet boundary conditions,

1
Uyxx1 + 11uyyo = ﬁ[lBUl — 27uy 4+ 15u3 — U4]. (37)

We have derived a third-order accurate von Neumann boundary condition for use witt
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compact second derivative

29%Uyxx1 + 8BUyx2 = —%8UX1 + h—lz[—81U2 + 84u3 — 3uy]. (3.8)

The case of periodic boundary conditions is the simplest to implement numerically. -
formulation maintains fourth-order spatial accuracy throughout. The resulting tri-diagc
matrix is not simply banded but includes two extra off-diagonal coefficients, one each in
upper-right and lower-left corners of the left-hand-side coefficient array. These additic
coefficients do not present additional difficulties to inverting the matrix. Standard moc
cations for the Thomas (1949) tri-diagonal inversion algorithm are commonly available
the periodic case. The periodic boundaries are implemented in the model using a redul
grid point, e.9.U3 = U,

3.2. Spatial Filtering

Spatial filtering is included as a feature of the model for two potential uses. First,
filter acts to partially de-alias the calculation, i.e., remove spurious accumulations of en:
from the smallest scales of motion (Canetal., 1988, p. 118). When the filter is limited
to this use the calculations can be considered as direct numerical simulations (DNS) ¢
flows. The second use of the filter, employed occasionally here, is as a simple subgrid-
model. When used as a subgrid-scale model the filter is similar in principle to a hyj
viscosity, (e.g.y V*u) that increases dissipation at smaller scales (higher wavenumbe
Hyperviscosity techniques are frequently used in simulations of geophysical flows (¢
Winters, 1989; Lesieur, 1987). When the filter is used in this fashion the calculations
large-eddy simulations (LES).

In the gravity-wave reflection flow being studied, the main interactions that occur ar
large scales and can be resolved. Both DNS and LES are used to investigate the flow:
a large range of Reynolds numbers. For the cases with higher Reynolds number, usir
large-eddy simulations, attention is focused on the large scales of motions and on the m
in which energy is transferred to the intermediate-scale motions; phenomena at the sm
dissipative scales are parameterized. For these cases the model damps out interactio
occur on scales too small to be resolved on the numerical mesh. Two types of filte
techniques, the explicit and compact methods, are described below.

To enhance the performance of the finite difference method, a small amount of fou
order spatial smoothing may be added to the right-hand sides of (2.13)—(2.17) to decl
aliasing errors without decreasing the formal accuracy of the scheme. Aliasing errors af
in finite-difference schemes mainly as the buildup of spurious amplitudes at the wavelen
corresponding to the smaller resolvable grid scales. In nonlinear equations, aliasing €
are related to the cascade of energy towards unresolvable scales, finer than the comput:
mesh. A one-dimensional fourth-order filter is of the form

Ui = Ui — ya(Ujy2 — 4Uj11 + 6U; — 4Ui_1 + Uj_2), (3.9)

whereU; represents a filtered value of, andy, represents the strength of the filter. The
filter is applied after the first half of the fractional time step (details below). The maximt
stable value of/, is 1/16. For the boundary nodes, a boundary condition is known (e.
no-slip) and no filter is used.
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The filter in (3.9) is a second-order finite difference representation of the te
va(AX)*(3*u/8x%), which has a dissipative effect anand smoothes the solution. The
leading order truncation-error term resulting from taking derivatives with the comp
scheme is of the formD (Ax)*#(8%u/3x%), which has dispersive effects on the solution. Th
fourth-order filter preserves the global fourth-order truncation error of the compact sche
The addition of artificial diffusion by filtering helps the system maintain a smooth soluti
and does not degrade the overall fourth-order accuracy of the difference equations.
filtering may alternatively be thought of simply as a desirable modification of the truncat
errors. It is more common, however, to consider the addition of spatial filtering to the t
viscous diffusion terms to be like a hyperviscosity, which is scale dependent, more stro
damping the small scale fluctuations.

It is advantageous to use the properties of the compact scheme to improve accurac
scale selectivity of the spatial filter. Lele (1992) presents families of fourth- and sixth-or
filters. He demonstrates compact filtering to be superior to explicit filtering for dampi
the shortest waves. In many formulations fourth-order compact filters confine their eff
to higher wavenumbers than do sixth-order explicit filters. Explicit and compact filters
various order are compared in Fig. 9.

Inthe numerical model a fourth-order compactfilter is used. The scheme requires sol
of another tridiagonal matrix. Lele’s Eq. (C.2.1),

< . . b C d
ol _1 4 Ui + el 41 = aqu; + El(uiﬂ FU) 4 El(ui+z Fu_o)+ El(uHs +Ui_a),
(3.10)

represents the filtering process. The filter is represented by the transfer furigtiog),
satisfyingtl; = Tc(wc)uj, with Fourier component wave solutions

up=06e%,  w.=kAx. (3.11a)—(3.11b)

The transfer function (as shown in Fig. 9) for (3.10) is

a; + by cogw¢) + ¢ cog2w¢) + di co93wc)
1+ 201 coSwe) '

Te(we) = (3.12)

1.0

051 2nd explicit
4th explicit
-~ 6th explicit
4th compact A
4th compact 8
— NoFilter
0.0 -
0 1

Wavenumber

Filter Shape

N
w

FIG.9. Comparison of explicit and compact filters is shown as a function of wavenumber. Second-fourth-
sixth-order explicit filters remove more energy at lower wavenumbers than the two fourth-order compact fi
(A and B) described in the text.
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A family of fourth-order tridiagonal schemes is found when the constraiits) =0,
and(dT./dw) (;r) = 0 are imposed. The coefficients for fourth-order accuracy are

1 1
ap = §(5+ 6a1 + 1603), b = 5(1+ 2011 — 2dy),

-1
C1 = ?(1 — 201 + 16d;). (3.13)
Wave reflection experiments were conducted using two different filter functions and
results were found to be approximately independent of the filter parameters. From inspe
of various filters satisfying (3.13), the two that were utilized confine most of their effel

below the Ax wave(kAx =7t /2). The first is represented by Filter A (4th-order compact
in Fig. 9 and may be written

0.40; 1 + U; + 0.40; 3 = 0.4u;_1 + u; + 0.4uj;4
1
— 8_0(Ui+2 —4ui11 +6u; —4ui_1 +Ui_2). (3.14)

The second filter is confined even more strongly to high wave numbers and is represe
by Filter B in Fig. 9. It is represented by

0.479%;_1 + Ui + 0.4790; 11 = 0.4750;_1 + Uj + 0.475u; 41

1
- @(Uwz —4ui41 + 6U; —4ui_1 +Uui_p). (3.15)

Explicit fourth-order formulations are necessary for the boundary nodes of the filter. F
mulations that exactly filter the. = = waves are

15 1
Uy 16U1-i- 16( Uz — 6U3 + 4uUs4 — Us), (3.16)
U—3u+1(u + 6uz — 4uy + Us) (3.17)
2= U2+ 75U 3 4+ Us). .

The three-dimensional version of (3.14), (3.15), or (3.9) is realized by performi
three passes of the one-dimensional filters orthogonally. The compact filter is used ir
x- andy-directions, and either the compact or the explicit filter is used on the variable ¢
(discussed below) in thedirection.

3.3. Time Differencing

A major focus of the time-differencing scheme is to ensure that the flow satisfies
continuity equation. A third-order time accurate implementation of the projection metho
utilized. The first-order accurate projection method was proposed independently by CF
(1968) and Temam (1969) and extended to explicit time schemes by EbdIn(1971).
The projection method and a family of related time discretization schemes are discu
in detail by Fletcher (1991), and appropriate boundary conditions are given by Kim
Moin (1985). Additional discussion of the projection method appears in Gresho (1990),
recent applications are presented by Karniadekisl. (1991), Bellet al. (1989), and Rai
and Moin (1991).
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The projection method solves the momentum equations in two fractional steps. The
step forms an auxiliary flow fieldj*, at the new time level by integration of the nonlinear
buoyancy, and dissipation terms. The second step then corrects the auxiliary flow fiel
applying the pressure gradient to guarantee incompressible flow.

An implementation of the first step of the projection method is illustrated here us
third-order Adams—Bashforth time stepping:

ur—u" 23 . 1 " 16 . 1 n-1
= =(-u-Vvu—kRi —vVu) —=(-u-vu—kRip+ —V?
AL 12( u-vu |,0+Re u) 12( u-vu Ip+Re u)
5 . 1 n-2
~(—u-Vu—-kRi —Vv? ) 3.18
+12< U VU= KRIP T Re “) (3.18)

Itis followed by the projection step, in whiaH is projected onto its non-divergent subspace
u™?!, according to the relations

LIn+l —u*

o tVett=o, (3.19)

vV.u"l =0 (3.20)

The appropriate pressure field for the projection step is formed by taking the diverge
of (3.19) with the condition (3.20) and solving the resulting Poisson equation,

V2l = V-u
At

(3.21)

Boundary conditions for Poisson’s equation of the Neumann type are obtained by u
the component of (3.19) normal to the boundary, e.gz-a0,

op_ (WP oug) N ap™t whTowp o
ON|g At 0z |g At '

The boundary valuess™ - N are updated according to known boundary conditions, such
those appropriate for no-slip, free-slip, or periodic boundaries. The key to making (3.2
stable boundary condition is correctly evaluatirfg N. Following Kim and Moin, (3.18) is
solved at the boundaries using one-sided derivatives as if no true boundary condition
known. Thus, the auxiliary velocity fields, influences the determination of the pressur
field at the boundary, which in turn influences the determination of the boundary velo
uttt, at the new time level. The projection step is completed by updating the bounc
velocities to their prescribed values at each new time level to eliminate the builduy
roundoff and truncation errors.

In their discussion of the projection method, Peyret and Taylor (1983) state that, s
the auxiliary velocity field appears both in the boundary condition for pressure (3.22)
Poisson’s equation (3.21), it cancels identically, and therefore, a homogeneous boul
condition for pressure is sufficient. Chorin (1984) points out that their scheme is unst
and inconsistent. This inconsistency is demonstrated by Kim and Moin (1985). Gre
(1990) claims, however, that he has experienced no inconsistency using the homoge!
boundary condition, and discusses the two options in detail, giving preference to use c
simpler homogeneous boundary condition.
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In the present work, the pressure field was found to be unstable when the homoger
boundary condition was applied, and the instability became significant at long integra
times. The numerical instability appears to depend on the type of physical velocity boun
conditions chosen. For a no-slip condition at the wall the instability was evident but v
weak, and the time integration of the flow could be completed without significant loss
accuracy using the approximate homogeneous pressure boundary condition. For a fre
boundary condition, however, the instability was too large to proceed with the approxin
boundary condition. The probable cause is the relative magnituag &r the two cases,
because it is nearly zero for the no-slip wall but becomes much larger in the free-slip ¢
It may be that the disagreement in the literature as to the nature and effect of the instal
arises from experiments conducted using differing physical boundary conditions. Flet
(1991) adds that, for the closely related MAC method, the permissible u%@@f: Ois
specific to a particular second-order staggered grid spatial discretization, suggestinc
other choices of numerical methods besides boundary conditions may also influenc
strength and nature of the instability.

Karniadakiset al. (1991) demonstrate that the temporal treatment of the projection s
is exact, and that the temporal accuracy of the overall method is determined only by
accuracy used for other terms in governing equations. They formalize the demonstratic
writing the definition (following their nomenclature)

vpttl= = Vpdt. (3.23)

Thus, the projection method is compatible with the explicit Adams—Bashforth schel
except that the average pressure fightf;, is used to guarantee incompressible flow at th
n+ 1 time level rather than a combination of the pressure fiplde" %, p"~2 from earlier
time levels.

From this view, advantages of the projection method become evident. The average
sure fieldp™** properly compensates for the truncation errors of the time and spatial
cretization schemes that occur during the time integration, and thus the projection meth
not susceptible to the accumulation of errors from the right-hand side of Poisson’s equi
in the same way as an explicit pressure treatment.

The projection method is implemented together with the third-order Adams—Bashft
(AB3) scheme. Startup of the simulation is done by using a forward Euler (AB1) tir
step for the first step and a second-order Adams—Bashforth (AB2) time step for the se
time step. Advantages of the AB3 scheme, compared with several other time differen
methods, are discussed in Durran (1991). The main advantage of the AB3 scheme
more commonly used explicit second-order schemes, such as the leap-frog (L-F) me
or the (AB2) scheme, is its stability. The leap-frog, (L-F) scheme is subject to a temp
oscillation of period At. The second-order Adams—Bashforth (AB2) scheme has a we
unstable growth of ordeiAt)® (Canutoet al.,, 1988, p. 102). In addition the AB3 scheme
has smaller phase and amplitude errors than the AB2 or L-F schemes (Durran, 1991)

Greater efficiency is introduced in the model by using a variable time-stepping sch
that allows the time step to change based upon local and temporal stability criteria. (WF
spatially variable grid is used, the local stability is proportional to the grid spacing, discus
below.) Gear and Watanabe (1974) demonstrate that variable time-stepping (multi
methods have the same stability properties as the constant step Adams—Bashforth sc
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if the time step is changed in a relatively smooth fashion. Third-order accurate time step
is maintained by integrating according to the relations

Unt1 = Un + AALF" 4+ Bi(Aty + At) F' L 4+ Ci(Aty + Aty + Atg) "2, (3.24)

whereAt; is the time step between time level 1 andn, At; is the time step between time
leveln andn — 1, Atz is the time step between time level- 1 andn — 2, 7" represents
the flux ofu evaluated at time leved, and

At (2At; 4+ 6At, + 3At
A=1+ 1(2Aty + BAt; + 3)’ (3.25)
BAL(Aty 4+ Atg)
—At2(2At; + 3At, + 3At
B, — —AL@EAL T 3AL + 3AL) (3.26)
B6AL Atz (At + Aty)
A2(2AY + 3At)

Ci = . (3.27)

BAtz (At + Aty + Atz)(Atr 4+ Atg)

Figure 10 shows the actual time step used throughout a typical three-dimensional s
lation. In the beginning of the simulation a constant time step fixed by the diffusion stabi
limit (D) is used (Subsection 3.4). After approximately time 30, the advection stability lir
(A) is more restrictive, and the time step is adjusted so that the most severe Courant nu
criteria is held at a stable value of 99% of the maximum allowable value (according
criteria described below that includes a safety factor which is related to the aspect rat
the nonuniform grid). This condition is typically encountered at the very fine mesh n
the wall during the wave amplification process. By using the variable time step apprc
an efficiency of approximately 50% is saved. The calculation shown here took 12,0001
integration steps to complete, but if a constant time step=0.0075 had been used that
was small enough to maintain numerical stability throughout the simulation, the calcula
would have taken over 18,000 time steps. Additional difficulty is avoided with the varia

0.06

0.04

Time Step

0.02

0.004 50 700 150
Time

FIG.10. The time step used in the numerical simulations is allowed to adjust during the simulation to ach
the largest stable time step during the transient process. The diffusion stability limit (D) is constant throl
out the computation with a maximum stable time step of approximately 0.0295, which for the first 30 time uni
the time step used. Line A is the stable value derived from the advection-buoyancy analysis given by Eq. (:
The advection stability limit becomes smaller than the diffusion limit after time 30 and varies throughout
calculation. Line D is made to follow the actual time step used in the simulation after time 30.
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time step method, becauaeoriori (before the simulation) the size of a sufficiently smal
(constant) time step is unknown. In contrast, in the variable time step approach, the
field itself sets an economical stable time step.

3.4. Numerical Stability Criteria

The stability limits of the combined time and space differencing schemes for the n
linear system may be approximated by performing a von Neumann stability analysi:
the linearized system of governing equations. The numerical stability of the advect
buoyancy, and pressure terms are examined together and the stability of the diffusion t
is examined separately. This approach yields two separate necessary conditions for |
stability but does not guarantee sufficient conditions because the region of A-stability
third-order Adams—Bashforth approximatiorots/dt = (a+ bi)sis not a square in a plane
with coordinate axeaAt andbAt (Gear, 1971). An approximate safety factor, describe
below, is used to convert the necessary conditions for the linear system (derived for a
form grid) into sufficient conditions appropriate for the nonlinear system on a nonunifc
grid. Following the approach of Durran (1992) limits on the maximum stable time step
the numerical simulation in the two-dimensional system are obtained. Again for simpli
we leta =0 and linearize the equations about a mean veIdLEit;assumed constant,

au —Jdu ap
—4+U—+—=0, 3.28
ot + aX + X ( )
Jw  —dw . ap
—4+U—+R — =0 3.29
5t TU, TRip+ - =0, (3.29)
ap —adp
Zt+uULl-—w=0, 3.30
at Tl Y (3.30)
0 d
b, _y (3.31)
X d9z

With Fourier component wave solutions for, w, p, and p, of the form u?l,b:
(g (ikaxtjsmaz-wcnAty \where the grid point indices in the andz-directions arg; and s,
respectively, and with leap-frog time stepping to illustrate the analysis, (3.28)—(3.31) r

be written in wavenumber space as

—SinwcAt + Cs Dy 0 0 % Dy 0 0
0 —sinwcAt + Cy Dy —i Ri At 2D | | @ 0
0 i At —sinwcAt +CyDx 0 pl 0]’
Dy D, o 0
B 2 0 0 P
(3.32)

whereCy = Y5!, Dx = At/ AxSSH andD, = At/ Az, 250002

For non-trivial solutions the determinant of the coefficient matrix must be zero, wh
leads to the condition
RiAt?D?

. 2 _
(=SinwcAt + C; Dy)* = (AXZ/AZ)(Dy/AZ7 + (Do AX)2" (3.33)

The right hand side has a maximunRitAt?, for all 0<kAx <z and O<mAz <, and
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so the stability criteria becomes
|—sinwcAt| > |Cr Dy + +/RIAt]. (3.34)

The maximum value oDy is +/3 atk Ax = %”; thus, for leap-frog time stepping, far At
to be real valued, the stability criterion reduces to

V3Ch 4+ VRiat <1. (3.35)

Adams—Bashforth third-order time stepping has a stronger stability restriction than
leap-frog scheme (see Durran, 1991). In this case it is required that

V3Cy + VRIiAt <0.724 (3.36)

This result has been verified experimentally.

In practice,Az < AX andU varies throughout the domain. In this case, the forgoir
analysis is modified to include a safety factor related to the most stringent stability restric
in the domain. Thus, we defing(x, y, z) = (U2 + v2 + w?)Y/2 as the local magnitude of
the velocity field and seek the largest time stepthat is stable at every location in the
computational domain. For this we use

_ U_(x, Y, Z) At

C
fl Az

, (3.37)
and find the largest value of (x, Y, 2)/Az(z) in the computational domain on the vari-
able grid (Subsection 3.6). While including the safety factor has the disadvantage o
lecting a smaller advective time step than may be necessary for stability and there
decreases the efficiency of the model, experience has always shown the model to be
when following this procedure. In addition, there is a small advantage to taking sme
time steps than necessary because doing so increases the overall accuracy of th
discretization.

The diffusion term is treated explicitly with AB3 time stepping in this model. Othe
researchers have developed models that treat the diffusion term implicitly; e.g., Karniac
et al. (1991) uses third-order Adams—Moulton time differencing. Implicit treatment of t
diffusion term allows larger stable time steps. Experience has shown, however, that
the problem being studied here, the nonlinear advection term has more restrictive sta
criteria than the explicit treatment of the diffusion term. Thus, there is no clear advant
to using the more complicated implicit diffusion treatment.

The stability criteria for the diffusion terms are analyzed separately from the advec
terms. This is done because of the simplicity of the analysis, the linearity of the diffus
terms, and because other factors of equal or greater importance (e.g., nonlinearity, nc
form grid) have been neglected. The diffusion terms have different temporal properties
the advection terms and yield a second necessary condition for stability. Again for w
solutions, and with the discrete wavenumber representation for the second derivative
the compact scheme (Lele, 1992) the AB3 method yields the restriction

At 0.545

“RerZ = 6 (3.38)

B

This result is less restrictive than the time-lagged explicit treatment necessary for the
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frog scheme, which yieldg < %5. The stability analysis for the density equation is equiv

alent, except that it requires a modified definitiorgpt= ﬁ.

3.5. Numerical Boundary Conditions

A wave-absorbing sponge layer is frequently used as an open boundary condition,
Davies (1983) and Durragt al. (1993). In this model a sponge layer is used in the upp
region of the finite computational domain. This layer is typically located far below the fi
surface of the fluid, and its purpose is simply to mimic the presence of the fluid above
computational domain. Rayleigh damping is an efficient wave-absorbing sponge layer
is competitive with the best radiation boundary schemes for certain parameter ranges
accuracy, however, is highly dependent upon the number of points used in the sponge
Durranet al. (1993) compare the wave absorbing layer to other wave permeable outf
boundary conditions. Typically, in the present model, ten percent of the total grid pol
(~13-40 are used to form the sponge layer. The damping coefficients are suggeste
Klemp and Lilly (1978).

Rayleigh damping is of the form

Wi = i — oi (Ui — Mio), (3.39)

whereysis the damped value of an arbitrary function (suctrasr p" 1), w is the predamped
value, ijg is the relaxed value of the function in the sponge region (usually zero)sanc
(discrete values of the damping coefficients at grid poiig given for the present case by
the Gaussian function

o — e (58/W)' /2 0<z4 < L, (3.40)

wherezg =z — (L, — Lq) andLg is the depth of the sponge layer (elg;,— Lqg <z < L,).
The two major disadvantages with the sponge layer are that it becomes computatio
expensive if used at several open boundaries in a model, and it has the property that I
waves are absorbed less efficiently than short waves.

Additional complexity arises in the implementation of the sponge layer because it d
notdamp the flow in a non-divergent manner. The divergence is evident since the coeffic
oi are functions only of. This problem is solved by implementing the Rayleigh dampin
step before the projection step. In this manner the total damping procedure includes

An+1
p

Ut = U —oi (U — Ujg) — At 7

: (3.41)

where the value of the pressure gradient is determined from the projection method.

Neumann boundary conditions arise in the implementation of the zero flux bounc
condition for density and for the free-slip velocity condition. The density boundary condit
comes from (2.50)%“) =cosw. The formula for third-order accuracy on a variable gric
(see the following section) is

_ —AZIAZ (A7 4 AZ)) ot (Azy + AZp)?
(A4 A2 - AZ (Azg + Azp)2 — AZ2
AZ?
+ 2
AZ] — (AZy + AZ))

p1 P2

2 P3s (3.42)
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FIG. 11. The variable-mesh grid in thedirection Az as a function of. Also shown are the constant values
of Ax andAy, the grid spacings used in tixe andy-directions.

where Az, is the distance between the locationspafand p,, and Az, is the distance
between the locations @b andps. A free-slip conditiong—g |pb = 0 is implemented with

__ Batazn? AZ u
T (At A2 —AZ P AR~ (Azn A+ Az)?

Uy (3.43)

3.6. Variable Grid Spacing

A variable-mesh grid is used to cluster computational nodes near the physical boun
at the ocean floor. An algebraic grid transformation from physical spacg z) to the
rectangular computational space, y, ¢), as shown in Fig. 11, is described here. Th
transformation is a function only of thecoordinate and is given by

z=a¢+b? 0<r<Ll (3.44)

The inverse transforng, = G(2), is

2
_ & & z
¢ = %, < > + . (3.45)

The coefficients, andb, are chosen so that the grid spacing closest to the wajh,, is
about one tenth the grid spacing near the top of the domaign,«. For a three-dimensional
realization with 130 grid points in the vertical, a typical choice employes} is 0.4 and
b, =3.1; results forAz as a function ofz are shown in Fig. 11. For a two-dimensiona
realization with 400 grid points in the vertical, a typical choice employeg is 1 and
b, =25.

Thez-derivatives in the governing equations may be expanded by the chain rule, e..

du  9uag

— = 3.46
9z 93¢z’ (3.46)
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where
ac 1 1
— = =G =T10¢) = ———, 3.47
0z~ 2b,\/(a; /20,2 + /b, 1@ =N = o (3.47)
which yields
8u
5, = (¢ )—{ (3.48)

By repeating this procedur%z% is obtained:

32u A au 8%¢
92 a;2< > HETTR (3.49)
With the definition
3%¢ -1 -1
G == = =)=
0752 T (e o) N T WA a2

Eq. (3.49) may be written

82

972 1(()

9c2

In addition, the fourth-order spatial filter requires the use of the term

(3.50)

+ Fz(é“)— (3.51)

(3.52)

d*u a3u
= —-ri<¢)a§4 +—6Ff<;)ra(:)3§ [4F1(§)fé(§)4—3r5(§)}8€2 +—r4(;>8§
wherel's3(¢) andIl'4(¢) are defined by
I'3(¢) = 3
M= 803 /205
-3
[4(¢) =

807 (¢ +a/2b,)7

(3.53)

(3.54)

Appendix B contains details concerning the fourth-order compactfilter on the variable-rr

grid.

A motivation for choosing an algebraic grid transformation of this type is that the inve
transform may be determined exactly. To maintain fourth-order spatial accuracy in
mode, transformed derivatives such%@smust be known to at least fourth-order accuracy
By choosing the algebraic transform given above, the derivatives for the transformatior
known exactly, and the spatial accuracy is not compromised. Further discussion of t
concerns and various approaches to resolving them may be found in Rai and Moin (1
Alternative transforms are available that allow for higher-order clustering near the bounc
One such choice would be=a, {2 + b, ¢*. Alternative, commonly used hyperbolic grid

transforms are give in Andersat al. (1984).
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Applying these relations to the governing equations (2.13)—(2.17) and the pressure
jection equation (3.21) leads to the modified set

—+—+T 1(§)a—w =0, (3.55)

M0 +T1(¢) M 4 Ripsin
— +Uu— +v— — o
ot TUax Tlgy THlOwg T RIp

_ap 9%2u  9°u
= ax R—e(ﬁ + a—yz + r? ({) ac? + I'2(¢) §> + Fy, (3.56)
ELv+ %+v8—+1“1(§)w*
ot X ay ¢

op 1 v 9%
N Re\ 9x2 r r +F 57
ay Re(8X2 + o5 8y2 + 1(;“)8;_2 + ()5 ) s (3.57)

8w+ 8u)+ gw +T'1(¢) + Rip cosax
et et e w_
gt TUgx Trgy THawg, #RIp

- —Fl(o— + Re(aaif + %ny il 8§2 s Fz(c)aa—’;) +Fu. (358)
g—f +u gp +v g_y + Fl(g)wa—i — w COSx — USina
- %Re(% 2?’; + Fl(i)a;; + Fzmg—’;) +F. (359)
N e S A Ly

(3.60)

Two implications of using the variable grid deserve brief comment. For many numer
schemes there is appropriate concern about their order of accuracy, whether it be se
order, fourth-order, or spectral accuracy. The present model consistently maintains fo
order spatial accuracy, meaning that the leading order error tern@®(@#*). It should be
realized, however, that when the grid spacixgychanges by an order of magnitude acros
the domain, the absolute errors involved also may vary across the domain, in this exa
by relative magnitudes of up to 410Consequently, grid clustering is an even stronge
tool for achieving desired numerical resolution than using higher-order schemes. Star
finite-difference schemes use second-order accuracy, and some even use first-order
accuracy locally (e.g., the Total Variation Diminishing (TVD) scheme). This accuracy c
be satisfactory if a high enough concentration of grid points is used. In the case of lim
resources and marginally sufficient resolution, however, higher order schemes such ¢
compact scheme are very useful.

Our second comment addresses modeling turbulence is regions of high aspect rati
the present model the ratio &fx : Azis approximately 5:1 at the wall. Other models us
ratios of up to 100:1. A complication that may arise if the flow is turbulent in these regi
is that gradients iz, adequately resolved in the high resolution direction, may be rotat
(as by an eddy) into the low resolution direction and hence be unresolved. The use of
aspect ratio grids is justified when applied in regions of non-isotropic flows, such as in
viscous layer near a wall where high shears occur predominately in one direction.
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3.7. Pressure Solution

Several methods have been examined to solve for the pressure field in the three-di
sional model in an efficient and accurate manner. The preferred solution method uses «
matrix inversions. This method is more accurate than iterative or multigrid techniqt
eliminates the uncertainty of iterating subject to a convergence criteria, and requires
memory and CPU time. It is, however, limited to situations in which the problem has t
directions of periodicity and uniform discretization. The governing Poisson equation,
FRO = TE =RKY.O. (@6

32p 82p 2
- 4T
3X2 8y2 1(§)

3%p
0r2
is Fourier transformed in the- and y-directions to form a set of separable equations fc
the pressure coefficienfs

B 12p 4120 P 4 e 2P~ Ak o) (362)
12 79¢2 ¢ e '

The modified Poisson equation is then solved for wave nunikaamdl using explicit differ-
ence formulas for the derivatives and the solution for the pressure coefficigxks |, ¢)
is transformed back into physical space to obtain the pressure field. The implementatic
this method also requires transforming the pressure boundary conditions.

The pressure solution has spectral accuracy in the horizontal directions and ach
fourth-order accuracy in the vertical direction by using five and four point stencils, r
pectively, as in (2.44), to estimaté p/ds? anddp/ds. The method requires subsequen

inversion of a pentadiagonal matrix of the form
—T3G) | T2\ & Ar2G)  2re()) —5I2() 5, 2)a
—2J 1t 22V ) A —kZ_| .
(12A§2 + 12Ag> P2t ( 3acz 3z )Pt oacz P

ar2(iy  2r0)\ » —T2(3)  Ta)
3Ac2 T 3A¢ )T T\ 12Aa02  12A¢

) Bo=RK L),  (363)

with special consideration required for the first two boundary nodes.

After the Poisson solver yields the pressure at every grid point, the pressure derivat
s, g—‘; andZ2 are formed using the compact scheme.
3.8. Flow Visualization

The complete velocity and density fields are stored regularly throughout the simula
to enable visualizations of the flow field at times of interest. Additional visualizations :
made of the vorticity and stream-function fields.

Akey issue related to wave breakdown is whether the turbulent boundary layer excha
fluid with the interior domain, or whether it predominantly continues to mix the same flt
(Garrett, 1991a). Two additional features were added to the model experiments to stud
issue. The first feature is the ability to track fluid particles. Particle trajectories are exam
to determine if a statistically significant number of these particles escape from the boun
mixed layer, or if particles initially outside the boundary layer are entrained into it.

Sets of 2,000-10,000 Lagrangian particles are released in the flow in arectangular la
after the flow has begun to develop. The equations describing their trajectories are
stepped using an Euler scheme with variable time steps. The fluid velagitiesy, z, t),
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atthe particle Iocationézp(x, y, Z, 1), are calculated using tri-linear interpolation, and the
the particle locations are updated with the equation

(3.64)

The patrticles are tracked for a number of wave periods and their locations are written €
ten time steps. It is straightforward to modify the particle trajectory equation to inclt
other effects on the particles (e.g., buoyancy, drag), thereby describing motion of part
whose trajectories differ from the local fluid motion (e.g., Maxey and Riley, 1983; Squi
and Eaton, 1990).

A passive scalar field is also added in some of the simulations to observe net r
transport from one region to another. For the three-dimensional model a transport equ
for the scalar quantityy is added to the system, e.g.,

@Jr S | S 3 1 (82&, 2y 02

v w ax2 ay? 972

. (3.65
ot ax ay 9z ScRe > ( )

The new parameter in this equation is the Schmidt nun®et, v/« s, the ratio of diffusi-
vities for momentum and for the scalar. To maintain adequate resolution of scalar gradi
Schmidt numbers between 0.7 and 1.5 are used in the experiments, depending C
Reynolds number.

The scalar field behaves as a “dye,” allowing observations of the transport of dyed f
from the boundary layer region into the interior stratified domain. Initially the dye is relea:
within the turbulent boundary layer after the flow has developed for a few wave peri
and reached a quasi-steady state of mixing. The location of the dye is monitored as the
develops through a number of wave periods.

3.9. Energetics

To understand the physical processes in the flow, its energetics are fundamental. Stat
quantities of interest are calculated during the simulation. Below are listed the equation
calculating the volume averaged kinetic enerfff), potential energyRE), total energy
(TE=KE + PE), dissipation rate of kinetic enerdy), dissipation rate of potential energy
(x), and buoyancy fluxgF), respectively,

1
KE = - / U2 +v* +w?)dV, (3.66)
\%
Ri
PE= - [ p%dV, 3.67
N7 (3.67)

. / 9%u 82 +82u L 82v+82v+82v
- Rel\axz ay2 = 9z2 Re\ax2  ay2 922 )’

w [(Pw  Pw  Pw
— | —+ — dv, 3.68
+Re(8x2+8y +822) (3.68)
Rip /9% 9% 8%
= — ) dv, 3.69
X / Pr Re<ax2 ay? * 822> (3.69)

BF = v / Ri p(w cosa + usine) dV. (3.70)
\Y
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The wave forcing scheme of Subsection 2.3 adds energy to the flow at each time
The total rate of work inpuV is the sum of the kineti®\kg and potentiaWpg energies
added to the internal wave train, and may be calculated by the volume averages:

1
Whe = — / (UFy + wFy) dV, (3.71)
Vv

1
Wee — 7/ RipF,dV. (3.72)
Vv

The flux of potential energy across the boundary is included in the dissipation te
x =RipV?p/(Pr Re, whichincludes both the dissipation and diffusion of potential energ
The net integrated diffusion is zero in the interior of the domain, but diffusive flux can b
source or sink across a physical boundary. Equations (3.77) below give an alternate m
for determiningy . Several numerical simulations were conducted where dissipation v
calculated using both (3.77) and (3.69). Typically, in the gravity wave reflection simulatic
the magnitude of the diffusive flux of energy across the boundary was less than 1% o
dissipation rate, and the two curves were indistinguishable. Since it is much more effic
to calculate the two quantities together, as in (3.69), it is this approximate procedure th
generally followed.

The kinetic energy equation is a useful tool in examining flow development. For a con
volume extending from the sloping wall up to the base of the sponge layer, the volt
averaged kinetic energy equation can be obtained with the use of the divergence the
With this choice of the control volume, the dissipation of energy in the sponge laye
eliminated and replaced with terms representing the flux of energy across the control su
up into the sponge layer:

IKE

1 . .
= v/v [—Ri p(wcosa + usina) + € + Dy, + Wke| dV

1 X Y 1 X Y
+—/ / (w-KE>|z:mpdxdy+—/ (- Plepdxdy  (3.73)
A Jo Jo A Jo Jo

whereDyx, is the dissipation-rate of kinetic energy by the filter, ads the area of the top
control surface.

The potential energy equation is derived by multiplying the density equati@kbsnd
averaging over the computational domain.

oPE 1 . .
T v/ [Rlp(w Ccosa + usina) + x + Dfpe"‘WPE} dv
v

1 XorW
+ _/ / (w - PE)|z=topdx dy, (3.74)
At Jo Jo

whereDx, is the dissipation-rate of potential energy by the filter, #ig is the rate of work
input of potential energy from the wave forcing mechanism. When added these equa
form the total energy equation,

JdTE

1
— = — D D W|dVv
=L exroeto i

1 %y
+ A /0 /0 [(w - KE)|z=top + (W - P)lz=top + (W - PE)|=op] dx dy.  (3.75)
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The energy and dissipation-rate spectra provide tools for examining nonlinearities
small-scale behavior of the flow. The spectra are straightforward to compute in ple
parallel to the slope, because the flow field is known on a uniform (and periodic) g
The vertical energy spectrum is determined by interpolating the velocity and density fi
from the clustered grid onto a higher density uniform grid, e.g., from 400 grid points
the vertical to 1024 for the two-dimensional model or from 130 to 512 grid points
the three-dimensional model. Then the velocity fields are Fourier decomposed usi
fast Fourier transform (FFT) package developed by Temperton (1983). Periodicity in
vertical direction is imposed by adding a mirror image of the flow field to the domain bef
decomposition. The final energy spectrum is formed from the Fourier wave amplitude
the velocity fields by multiplying by their complex conjugates, dividing the result by tw
and integrating these values over the domain.

The dissipation-rate spectra are formed by defining the viscous dissipation-rate fun
at every grid point. For a three-dimensional Newtonian, incompressible, viscous fluid
dissipation-rate functiond, is given by

o_ L[,[(2u 2+2 v 2+2 dw 2+ 8v+8u2
~ Re| \ dx ay 0z ax  ay
dw  ov\? Jou  dw)?
— 4+ — —+— | 3.76
+(8y+az> +<8z+8x>] ( )

The associated density (or potential energy) dissipation-rate function, and spectra are fc

in like manner as
1 ap\% [0p\% [9p\?
=——I(=— — — . 3.77
X PrRe[(Bx) +<8y> Jr(82 ( )

After the fields are formed they are interpolated onto a uniform mesh and Fou
decomposed. The amplitude of the complex Fourier wave components is integrated
the domain and plotted as the dissipation spectrum.

3.10. Code Optimization

To minimize in-core computer memory usage, as few data fields as feasible are s
at each time level. The approach used is to save the fluxes for the right hand side c
governing equations after every time step. The three-dimensional model, using third-c
Adams—Bashforth time stepping, requires saving 12 flux fields (3 for each equation), 5 pt
tive variable fields, and 6 work arrays usually containing derivative fields to form the flux

Particular attention has been paid during code development to allow the code to tak
vantage of increased performance speed achieved through vectorization and paralleliz
The usual approach is to calculate for one plane at a time and to vectorize across the
(i.e., while calculating values (%{f the code is vectorized to calculate 128 derivatives for
entirey plane simultaneously). This approach is ideally designed for gains by parallel
tion of the code when ported to a parallel computer. Limited testing on a multi-proce:s
Silicon Graphics Server shows that the code runs 3.9 times faster when run concurrent
5 processors than when run on a single processor.
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3.11. Physical Parameters

Following conventions, we define four different Reynolds numbers in the model. T
first is the dissipation Reynolds number,

€ ud uL u\?
Rgg=——~——=(—](—) ~ReFP 3.78
@ vN2  pLN?2 (v)(NL) err ( )

which relates the dissipation rate of kinetic enekgyto the viscosity and buoyancy fre-
guency. The second is the boundary layer Reynolds humber,
Uy

Reg , (3.79)
v

whereU,, is the maximum velocity within the boundary layer, ahid the boundary layer
thickness. The third is the wave Reynolds number,

Cir, ANA A\ /N 1
Re, = =22 ~ 24 (“-) <—> ~Re-, (3.80)
v v v u Fr

which relates an approximate wave phase sp€ednd vertical wavelength,,, to the
viscosity. The last is simply the Reynolds number of the flow,
Uy

Re , (3.81)
v

whereU,, is the maximum current speed in the oncoming wave trainjaa@sn/|K| is its
wavelength.
From the simulations, typical values for these Reynolds numbers are

5 < Reg < 200, (3.82)

10 < Rg < 200, (3.83)
5,000 < Re, < 40,000, (3.84)
300 < Re< 400Q (3.85)

In a similar fashion we define two Richardson numbers, the Richardson nuRiber
(Nx,/U,)? based on the current velocity, and the wave Richardson nurRbge=
(N,/C)? based on the phase spe@dRe, and Ri, are independent of the wave ampli-
tude, A, while ReandRi depend directly orA. Typical values for the Richardson number
are 20< Ri < 500, whileC is defined so thaRi, =1 in all of the experiments. Within the
numerical modeRe, andRi, are used. Therefore the two key experimental parameters
the model ar&Re, and A. Experimental results are normally presented in ternmRi@nd
Rewhich include the dependence on the wave amplitude.

It is important to note that the simulations are conducted at moderately low Reyn
numbers, far below values typical for oceanic conditions. The simulations are conducts
similar Reynolds numbers to those achieved in related laboratory experiments (thoug
simulations are at lower Richardson numbers). Typical oceanic internal waves may |
Reynolds numbers of I1ased upon a length scale of 100 m, current speed of 10 cmr
and kinematic viscosity of T® m?/s.
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The present numerical methodology was not designed to include the full complexit
oceanic conditions, butrather to study the fundamental physics of the internal wave refle
problem. The goal is to seek qualitative and semi-quantitative information about phys
processes that are not well understood. Important questions regarding the depender
the Reynolds number, and effects of other oceanic flow features, are not accessible v
the present approach. Since the internal wave reflection does not appear to be micrc
driven, however, small-scale turbulence and viscosity do not dominate or invalidate
useful information derived from the results. Here, the role of turbulence and small s
features is primarily to dissipate internal wave energy. The present model, with its inhe
limitations, serves as a useful starting point for numerical studies of internal wave reflect

Several additional dimensional and dimensionless parameters are used in the simule
and some typical values are listed here. Physical constants for gravity and backgr
density are

g=98m/s  p,= 1000 kg/n. (3.86)

In turbulent simulations it is often necessary to have the diffusivity of density greater tl
the diffusivity of momentum to adequately resolve strong density gradients throughou
time integration. It is generally agreed that Prandtl number relating turbulent eddy viscc
coefficients for density and momentum should be of order 1; so we choose

06<Pr=<1l (3.87)

For the problem to be periodic ithe width of the domaith., is setto an integral number of
wavelengths (typicallyp = 1 orn = 2) appropriate td_x = ni,. Typically, small values of
the bottom slope & « < 30° and angle of wave propagation<® < 30° are of interest. A
set of physical parameters, chosen in the mid-range of velocity and stratification approg
for this study, leads to the set of model parameters

_ (10'm/9(10m)

Re, o = 10,000 (3.88)
. (102sHaom]?
= _— = 1 .
Rl 101 m/s ' (3.89)
Pe= Re (3.90)

This set of nondimensional parameters has been used in well-resolved, direct num
simulations of the gravity wave reflection problem.

3.12. Running the Experiments

This section presents a brief description of how the numerical experiments are monit
and adjusted throughout the computations. After choosing the parameters for each t
dimensional simulation the flow is initialized with white noise in the lower half of th
domain as described in Subsection 2.5. On a low resolution grid 8f&5x 130(x, v, 2)
grid points, the noise is then allowed to adjust for one to two buoyancy periods into |
level, stratified turbulence exhibiting coherent structures. At this point the wave forc
mechanism is turned on in the top half of the domain and the waves begin to propa
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downward towards the wall in a somewhat linear fashion. During this transient stage o
calculation, no additional resolution is required to resolve the developing flow field.

Typically after four to five buoyancy periods, the leading edge of the wave train reac
the bottom slope. By this time the energy in the noise near the boundary has typic
died away by roughly an order of magnitude, from its initial level to a weak backgrou
perturbation field. Atthis time the energy density level in the noise field is approximately ¢
to five percent the energy density of the oncoming wave. After two to three more buoye
periods, the flow starts to exhibit nonlinear behavior as the wave reflection process be
to strengthen. A typical flow feature observed during this stage is a strong density grac
developing in the boundary layer region. At this stage of flow development the simulatio
moved onto a higher resolution numerical grid. The process of regridding is done by u
Fourier interpolation, for example, onto a 1283 x 130 grid point mesh.

During the next wave period it usually becomes apparent if the flow will develop ir
turbulence or remain laminar. The turbulent cases often required further regridding «
more refined grids to resolve the three-dimensional structures that developed in the bc
ary layer. This is also done by Fourier interpolation in $hdirection, onto grids of either
129x 65 x 130, or when warranted 120129 x 130, depending upon the physical dimen
sions of the problem and resolution criteria. The grid clustering irztd&ection is not
changed during the simulations, but rather is set at the beginning to a degree that
adequately resolve the boundary layer (based upon experience).

After regridding to the highest resolution for the simulation, the flow is run out f
10 to 30 more buoyancy periods (roughly 10,000 to 50,000 times steps). This typic
allows a quasi-steady flow pattern of wave reflection and breakdown to develop an
recorded. The resolution requirements are determined by a number of factors. Thes
clude analysis of the energy spectrum as discussed above, comparisons of the e
removed at well-resolved scales and by the scale-dependent filter, and determinatit
whether a direct numerical or large eddy simulation is being conducted. Some of the
merical simulations may be considered a hybrid between direct numerical and large «
simulations. This may be the most appropriate description for cases in which appr
mately 80% of the energy is dissipated at well-resolved scales by the true molecular ef
(e.g., through the kinetic energy dissipation rate) and approximately 20% of the en
is dissipated by the hyperviscosity filter at the smallest scales on the numerical m
In these cases, it is expected that the small degree of subgrid-scale dissipation doe
significantly affect the development of the flow at the large, energy-containing scale
motion.

The three-dimensional simulations are computationally expensive and time consun
The high resolution runs (at 128129 x 130 grid points) take approximately 24 hours o
CPU time on the Cray-YMP to complete 4500 time steps. The code is written in porte
FORTRAN 77, and the simulations have been conducted without modification on six
forms including Stardent, Hewlett-Packard, DEC, Cray, SGI, IBM, and Sun servers,
percomputers and workstations. A simulation at a resolution ofxX1@9x 130 requires
approximately 110 megabytes of memory using single precision on a 32-bit workstatio
takes about two minutes of CPU time per time step on a HP-9000 series 715 worksta
or 9 seconds of CPU time per time step on the Cray-YMP. Frequently, to make the
use of computer resources, the low resolution portions of the simulation were condu
on the local workstations and then restarted on the Cray computers after regridding fo
turbulent portions of the simulation.
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3.13. Summary

The numerical models developed herein provide state-of-the-art computational t
niques for simulating incompressible, stratified flows. These models include several
features, such as the wave forcing mechanism and the combination of variable time-ste,
with the third-order Adams—Bashforth projection method. The models are designec
accuracy and, when used at low Reynolds number, represent a direct numerical sir
tion (DNS) of a turbulent boundary layer. At higher Reynolds number the model may
considered a large eddy simulation (LES) of the flow, with a simple hyperviscosity fil
used to dissipate energy from the subgrid scales of motion. The majority of the simulat
conducted for this study are direct numerical simulations. In the following section result
DNS and LES simulations are presented. The gravity wave reflection problem for whick
code was designed illustrates the capabilities of the numerical model and permits insig
analyses of the physics of the flow.

4. RESULTS

This section contains results from the computational experiments. Several high resol
simulations have been conducted (Slinn, 1995) to investigate internal wave reflection
are reported elsewhere (Slinn and Riley, 1996, 1998a, 1998b). These experiments
oncoming waves of moderate amplitudes from the mechanical wave forcing scheme
were designed to observe nonlinear interactions that occur in the bottom boundary |
Additional two-dimensional simulations and linear analyses were used for comparison,
to help understand the influence of nonlinearity and three-dimensional interactions. +
results from DNS and LES examples of internal wave reflection will be described, but
a brief description of the model-validation methods is given.

4.1. Model Validation

Avariety of methods were used to validate the code and to gain confidence in the accl
of the numerical experiments. These fall into four categories: (1) comparison with analy
solutions, (2) internal consistency checks, such as conservation of mass, momentun
energy, (3) comparison with experiments, and (4) meeting established resolution crite

The flow field explained by Phillips (1970) and presented in Subsection 2.6 provide
analytic solution available for testing the accuracy of the code in two ways. The first
was simply to initialize the model with the Phillips’ boundary layer velocity and dens
profiles. This test was done to see if the flows remained steady for a variety of boun
layer Reynolds, Richardson, and Prandtl numbers, as well as for different bottom sic
The codes passed these simple tests, which were also valuable for determining how
grid points are required near the wall to adequately resolve the buoyancy driven flows
function of the Reynolds number.

The second validation technique involving the Phillips’ solution was a transient test.
model was initialized with no flow and a linear density gradient extending to the w.
At time zero the flow was allowed to start from rest by applying the zero-flux bound:
condition (2.50) on the density field. This forced the flow towards the steady state solut
Parameters for this case &g, =13, Re, =10,00Q Ri, =1, Pr=1, anda =9.22°. The
energetics of the transient test are illustrated in Fig. 12. The transient tests indicated t
took about two buoyancy periods for the boundary layer profiles to overshoot the en
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FIG.12. Kinetic, potential, and total energy integrated over the control volume for the transient Phillips’ te
The steady state values for energy are plotted for comparison.

in the steady solutions. The kinetic energy in the transient case reached about 1.5
the kinetic energy of the steady flow before rebounding toward the steady solution.
transient solution exhibited damped oscillations about the steady solution with a perio
about six buoyancy periods. After approximately 20 buoyancy periods the variations in
transient solution had decayed, and the flow nearly achieved the steady state predic
The magnitude of the oscillations, at the last times in this experiment, were less than 5
the energy in the steady solution. For comparison, the wave period of a critical freque
wave for the bottom slope,®, is approximately 6 buoyancy periods. The response tin
scale of the buoyancy boundary layer is shorter than the convective or wave propag
time scales associated with the overall wave reflection process. These results are t
of tests at different slopes, betweehahd 30; however, very shallow slopes have slowe|
response times. The buoyancy boundary layer is restricted to a thin region near the
and the energy density there is much less than that contained in the finite amplitude gr
waves used in the numerical simulations.

Code validation was also investigated by studying some of the simplest wave ref
tion problems, for which linear theory and intuition provide pictures of the flow behavi
One such case is the reflection of internal waves of small amplitude from a flat bott
Here the oncoming wave is expected to reflect from the bottom without changing we
length. In addition the interactions between the oncoming and outgoing wave trains
expected to be minimal, so that they simply add constructively (while passing thro
one another). The test was successfully completed. A steady flow was achieved as tt
coming wave train reflected from the bottom boundary, without changing wavenumbe
frequency, and passed through the incident wave train without event, ultimately progr
ing into the upper sponge layer where the wave energy was absorbed without signif
reflection.

A fourth test, allowing direct comparison with linear theory, examined vertical spectre
smallamplitude waves reflecting from sloping boundaries. Provided the waves are some
removed from the critical angle, linear theory predicts the vertical wavenumbers of
reflected waves. Analysis of the energy spectra of the computed flow shows the transt
energy to the predicted higher wavenumber. In this way it is straightforward to identify
energy associated with the oncoming and the reflected wave trains.

The effect of the sloping bottom is to increase the energy density of the reflected w
Using linear theory, Phillips (1977) predicts, for the ratio of the reflected to incident we
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amplitude and energy density, respectively,
A coSa —m +0)

a7 (4.1)
A cojo+m —0)

E_ (A

= (A> | (4.2)

To obtain the wavenumbers of the reflected waves, it is necessary to use linear tt
predictions in the rotated coordinate systéxnz). In the unrotatedxr, zr) coordinate
systemkry/my =kri/mr; and

mr A

M _Xi

— Ar, (4.3)

where A is the amplification factor. In the rotated coordinate system, howgyes Ay,
or equivalentlyk; =k;, and thus all change in wavelength is observed inztérection.
The ratiom,; /m; may be determined by considering the relationships

kr = kcosae — msing, (4.4)
mr = ksina + mcosa, (4.5)
k = kr cosa + my sina, (4.6)
m = —kt Sina + my cosa. 4.7)

Algebraic manipulation between the reference frames leads to theresults

My, k: sina + m; cosw

= = A 4.8
Mri ki sina + m; cosa F (4.8)
m _ A ki sina + m; cosa 3 ki Sina7 (4.9)
m Cosw cosa
K
- =1 4.10
K (4.10)

Figure 13 shows the vertical kinetic energy spectra for a small amplitude wave train, \
amplitude approximatelhA = Ag/30 (whereAy is the amplitude of an overturning wave)
and frequency 0.16, which has reflected from a bottom slopé.ofttis case was run at

0-03 T T T T T

FIG. 13. Kinetic energy spectra in the vertical direction for a linear amplitude wave train reflecting fron
sloping boundary with a no-slip boundary condition.
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Re= 2350 with a no-slip bottom boundary condition, and (at the time shown) reache
guasi-steady state. Here the oncoming wave train has a wavenamio¢is, and linear
theory predicts an amplification facté = 3.3 with a reflected wavenumber; (in thez-
direction) of 17.1 for the inviscid case. Note that the reflected peak contains approxime
twice as much energy as the oncoming wave train, consistent with the linear (invis
relationships, even though significant dissipation has occurred in the model. The result
thusinreasonable agreement with predictions. Experiments with somewhat larger ampl
linear wave reflection (Slinn, 1995) show the development of an intermediate peak
wavenumber of approximately 11.5 that appearsto be related to resonant triad interac
(Thorpe and Haines, 1987).

To predict flows accurately the numerical model must satisfy the governing physical I
The code was checked for internal consistency to ensure that it conserves mass, mome
and energy. The conservation of mass for an incompressible flow is represented by the
tinuity equationVv - u = 0. Two measures of the divergence of the flow are monitored duri
the simulations: local and global divergence. The global divergence criterion in the th
dimensional model compares the volume integralf gfs + g—;)z dVand— [, (32)2dV.
For all of the experimental results the global divergence is negligible. Typically the ratic

Sy (Qu/ax + dv/dy)? + (dw/32)>dV

[, @w/32)2dV (4.11)

is less than 110* during periods of strong turbulence. At the beginning of the simulatiol
when the flow is laminar and the waves are approaching the wall, the flow is incompres:
to one part in 18, approximately the same magnitude as roundoff errors in single precis
calculations.

The local divergence criterion is a normalized measure that gives the magnitude
location of the largest divergence in the model. The maximum of the local divergenc
normalized by the mean shear at each vertical leyel,g.,

au 1 au\ 2 v
8—)((2): oLy /A<ax> dxdy| (2, (4.12)

and is calculated by - u/g—i. For a large number of simulations the largest local divergen
consistently occurred near the wall. Usually this occurred at the third or fourth grid pc
from the wall, in the region wherax is three to five times larger thanz (associated
with the variable grid). A typical maximum local divergence is about 1%. The fact that 1
divergence is small and is located in a region where it might be expected (because sy
treatment is used to resolve strong gradients inztldérection) builds confidence in the
accuracy of the model results. The model conserves mass to acceptable tolerances.
Every simulation provides information about the balance of energy for the flow. All of t
terms of the kinetic, potential, and total energy equations are calculated at each tenth
step during the simulations. The terms are summed and graphed to ensure that ene
conserved. The energy balance requirementis a more severe test of the accuracy of the
than either conservation of mass or momentum, because the energy terms are calc
using higher-order spatial derivatives. The kinetic energy balance is shown in Fig. 14 f
turbulent wave reflection experiment with Reynolds and Richardson numbers (based
the wavelength and maximum current speed of the oncoming wavReef1100 and
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FIG. 14. Kinetic energy balance for a turbulent wave breakdown case, showing the degree of energy co
vation in the model. Terms are labelled as work inp(bouyancy flux(B¢), time rate of change of energy
(Ey), balance B), sponge flux S;), dissipation ratesc(and ), and filter lossesR).

Ri=110. In this cas@r =1 and the bottom slope and angle of wave propagation are eq
o =6 =20, sothatthisis a critical angle experiment. The energy conservation illustrate
Fig. 14 is typical for the turbulent simulations. The largest terms in the energy equation:
the input of work W) and the dissipation of energy &nd x ). For the kinetic and potential
energy equations, the buoyancy fl(B;) is also quite large and oscillates throughout th
simulation.

The sum of all of the energy terms would yield a balance teBmithat is approximately
equal to zero. It was preferable not to plot the balance ®rmear the zero line because it
was difficult to distinguish from other small energy terms, such as the fluxes of energy
the sponge layer. Therefore we chose to plot the sum of all of the energy terms excey
the work input, and show it by a balance curtd) ,(which should be equal to the work input
(W) curve when energy is conserved. Kinetic, potential, and total energy are conserve
a high degree of accuracy.

The last type of internal consistency check is comparison between the two- and tt
dimensional models. Some of the three-dimensional calculations were repeated in
dimensions to provide a comparison, to study the three-dimensional characteristics c
flow, and to check relationships between accuracy and resolution. The two-dimensi
simulations were typically well-resolved at grid resolutions of 20400.

Additional code validation comes from comparison with laboratory experiments of si
lar flows. Cacchione and Wunsch (1974), Taylor (1993), and Ivey and Nokes (1989) t
studied the critical angle reflection. There were some features of their laboratory setur
are not exactly duplicated by the numerical model. One difference is the method of w
generation. The model uses an oncoming wave train, whereas (because of the tank geo
the laboratory experiments used a mode-one internal wave that has vertical wavele
equal to the depth of the fluid. The laboratory experiments were also conducted at some
higher Reynolds and Richardson numbers than attainable with direct numerical simulat
although both were well within the range for turbulent wave breakdown to occur.

Close agreement exists between the laboratory and numerical experiments in the
where similar experiments are available (Slinn, 1995). The two flows go through the s
quasi-periodic behavior, with qualitatively similar flow features developing at each stag
the cycle. This builds confidence for additional numerical results for which no laborat
experiments have been conducted. The numerical experiments have the advantage of
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FIG. 15. Horizontal energy spectrum from a three-dimensional calculation as a function of horizor
wavenumberk (orl). There are 6 energy curves in the figure, three energy spectra decomposed dirtfaion,
labeled &, 10x, and 2, and three energy spectra decomposed itytbgection, labeled %, 10y, and 2§. They
are at heightz =0.019, 0.052, and 0.15, respectively, corresponding to the 5th, 10th and 20th grid points fr
the bottom boundary. Also shown is a reference line with a slope ™.

able to study cases not accessible to laboratory experiments. For example, small b
slopes (which are common in oceanic applications) have been difficult to simulate in
laboratory.

The final code validation method to be discussed is a check of numerical accuracy. V
a direct numerical simulation is resolved satisfactorily, it gives the correct solution; e
increasing the resolution significantly and repeating the simulation does not alter the re
materially. A standard method to determine if a simulation is resolved satisfactorily is
examine the energy spectra. A well-resolved spectra will contain significantly less enert
higher wave numbers (small scales) than at the low wave numbers (large, energy-conta
scales). A rule-of-thumb for the DNS of turbulence is that the energy level at the larg
scales should be approximately three orders of magnitude higher than that at the sm
scales of motion.

The average horizontal energy spectra on three differgnplanes are shown in Fig. 15
from an experiment with parameters=9 = 30°, Re=170Q Ri = 138. Each of the spectra
is taken in the turbulent boundary layer regiort,at79.5 (five wave periods after startup) at
distances from the wall af=0.019, 0.052, and (L54,, respectively. At this stage the flow
has reached a quasi-steady turbulent state. The horizontal spectrum gives a good m
of the resolution of the simulation, without adding the complication of interpreting t
spectrum on the variable grid. The flow was computed on a<1288 x 130 grid; therefore,
the highest horizontal wavenumber on the mesh is 64. The region of wavenumber s
abovek =40 is strongly influenced by the removal of energy by the compact filterir
Also shown is a reference line with a slope lof>/3. The aspect raticAx/Ay=1.1 is
very close to one; therefore, the spectra insthandy-directions are considered together
Figure 15 indicates that the flow was well-resolved with a strong roll-off of energy
higher wavenumbers. There are approximately four orders of magnitude more energ
wavenumbers between 1-5 than in wavenumbers between 20-30 which are not signific
affected by the compact filter.

The overall consistency of the validation tests (with linear theory, comparison with la
ratory data, conservation properties, and internal numerical tests), together with the phy
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FIG. 16. Density fields in arx-z plane in the near wall region for critically reflecting internal waves from ¢
bottom slope of 30

coherence of the results, Slinn and Riley (1996, 1998a, 1998b), allows confidence the
model accurately represents the fundamental physics of the flows.

4.2. Critical Reflection Experiment

Throughout the remainder of this section, the capabilities of the model are illustrate
concepts about wave reflection and boundary layer development and are examined fi
numerical simulation. The bottom slope in this experimeatis30°, Re=100Q Ri= 108,
andPr=1. The fundamental frequency of the oncoming wave- 0.5) is chosen so that,
upon the wave's reflection, the angle of the group velocity vector to the horizontal matc
the bottom slopei.e., the wave is at the critical angle. It is representative of cases wh
transition to turbulence occurs during wave breakdown. Figure 16 shows isopycnals |
a two-dimensional cross-section from the experiment in the near wall regitos 86 and
66, where time is nondimensionalized by the buoyancy frequeMicthe wave period is
12.56, and the buoyancy period i8 ZThe oncoming wave train is of moderate amplitud
and regions of wave overturning and strong density gradient have developed near the b
boundary. Here an arbitrary constant background densitydietd10 has been added to the
mean density gradient and fluctuations, consistent with the Boussinesq approximation.
the lower portion of the computational domain to a height.@k1is shown in the figure
(the full domain is 3, high), thus emphasizing the near-wall region. The dimensions :
normalized by, and there are two horizontal wavelengths inxbkdirection, A, = 0.577x,.
The model is periodic in thg-direction with the width of the domain set laj = 0.61,.

By time t =30, the wave train has reached the wall, and a strong gradient in den
has formed. This feature, called a thermal front by Thorpe (1992), moves upslope a
x component of the phase speed of the oncoming wave. As time progresses, wave
turning develops in the lee of the thermal front, and at tiraeb5, statically unstable fluid
is apparent. As time continues, the overturned regions break down into small-scale t
lence and dissipate the wave energy in a three-dimensional fashion. Here the flow ap
to be quasi-steady, with a locally turbulent region of statically unstable fluid moving |
slope together with the thermal front. This result supports the observations of Ivey
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FIG. 17. Velocity vectors in these planestat 55 and 66: thex-z plane located ay = 0.3, (top), thex-y
plane parallel to the bottom slope at a heighkt0.103\,, and they-z plane located at = 0.577), (bottom).

Nokes (1989), who conducted a related experiment in the laboratory ovestope. They
describe a turbulent bore that passed through the boundary layer each wave perioc
example, note that d@t=55 and 66 there are distinct stratified regions between the t
bores.

The previous figures have indicated the structure of the flow in only one vertical ple
Next we examine aspects of the three-dimensional nature of the flow during wave breakc
into turbulence. Velocity vectors in three different planes are presented in Figt 7/5&
and 66. The top panels of Fig. 17 show velocity vectors in the same planes as the de
fieldsin Fig. 16. These velocity vectors are plotted on a subset of the grid locations to enh
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FIG. 18. Mean velocity profilesi(z) at different times for the same experiment shown in Figs. 16 and 17 f
critically reflecting internal waves with a bottom slope of 30

visibility. A reference vector with magnitudel| =0.12 is plotted outside the domains to
indicate the velocity scales. The flow appears qualitatively similar at the two times sh
indicative of the fairly steady turbulent flow. Strong currents converge in the region of
turbulent bore and create a strong region of local mixing and dissipation in the boun
layer. The shear of the oncoming wave is evident in the upper portions of the domain
merges into the bore region as an integral part of the dynamics occurring there. The
might be termed the “turn around” zone for the internal wave, where the downward mo
fluid and upward moving fluid change direction as the plane wave is interrupted by the v
Between the two turbulent regions a region of downslope flow occurs very near the
across most of the breadth of the domain (Fig. 18).

Inthe middle panels of Fig. 17 the velocity components are shownxrygrlane parallel
to the sloping bottom plane at a distance from the wall €f0.103\,. The vectors appear
to indicate a divergent flow because they show only the components of velocityxrythe
plane and do notinclude tiecomponent. Several distinct horizontal structures are appar
in the flow. The observed variability in thedirection is an indication of the importance of
the three-dimensionality of the wave breakdown process. If regions of high variability
thev component are compared with the density fields of Fig. 16, then the strongest tt
dimensionalities are seen to occur at (and move with) the location of the thermal front.
bottom panels of Fig. 17 show the velocity vectors in-aplane located at = 0.577x,.
Here the recirculation in the boundary layer is evident.



592 SLINN AND RILEY

The localization of the turbulence appears to be related to the geometry of the prob
particularly the aspect ratio of the horizontal and vertical wavelengths of the oncon
wave, and to the steepness of the bottom slope. Turbulent patches develop initially a
the location of the thermal front and have a characteristic thickness of approximgtaly
After the turbulence is formed it then appears to favor horizontal spreading. The steep ¢
effectively partitions the boundary layer into regions above and below the turbulent t
and helps to confine the turbulence to a localized region. The fluid in the boundary I:
above (ahead) and below (behind) the bore are somewhat insulated from the turbulen
the stratification.

Mean alongslope velocity profilegz) are plotted as a function of perpendicular distanc
from the wall in Fig. 18. The top panel shows the domain to a height4f,avhile the
bottom panel shows only the bottom portion of the domain to a heightt@.p. Att =23
the oncoming wave train has not yet reached the bottom boundary and the velocity pr
reflects the steady laminar boundary currents induced by diffusion of the density field a
wall as predicted by Phillips (1970). At later times, after wave breakdown has commer
the average velocity profiles are similar to one another illustrating the quasi-steady n¢
of the flow. A consistent feature in the profiles is a thin viscous layer of downslope fl
located near the wall at heighis< 0.025 which is resolved by approximately ten grid
points (at locations of symbols). Three-dimensionality is strongly inhibited in this layer
the presence of the wall due to viscous effects. This feature does not develop for bo
slopesa < 20° and appears to be a mechanism for restratification coupled to the w
breakdown in the bore.

Volume averages of kinetic, potential, and total energies are shown in Fig. 19. The
coming gravity waves have equipartition of enerigg.( equal kinetic and potential energy).
Also shown in Fig. 19 is the time integrated buoyancy Bixits negative value indicates
a net transfer of potential to kinetic energy. After abbst40 the energy input from the
wave forcing mechanism nearly equals the dissipation of energy and the total energy il
system levels off and the system reaches quasi-equilibrium.

Volume integrals of the various terms of the kinetic and total energy equations (3.
and (3.75) are shown in Fig. 20 as a function of time on an average, per unit volume, b
After approximatelyt =50 the energetics of the flow develop in a quasi-steady mann
The bottom panel of Fig. 20 shows the terms in the total energy equation. The domi

0.015 .
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O

FIG. 19. VWolume integrals of kinetic, potential, and total energy and the time integrated buoyan@ flax
the 30 critical angle experiment.
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FIG. 20. Volume integrals of terms in the kinetic (top) and (total) energy equation, (3.79) and (3.81): w
input (W), rate of change of enerdyg;), dissipation ratesc(and x), filter dissipation F), buoyancy flux(By),
flux of energy out of the control volumE; ), and balanceR).

terms are the work input and loss of energy by turbulent dissipation. The netresultis a
constant balance between these major terms.

The terms of the kinetic energy equation show more details of the flow developm
A dominant feature is the rapid oscillation of the buoyancy flux. Associated with this
the time rate of change of kinetic energy, which follows the buoyancy flux closely. T
oscillations in the buoyancy flux occur at approximately the buoyancy period oF@r
example, there are 15 maxima and minima in the buoyancy flux betive&0 tot = 140,
or approximately one per buoyancy period. While not all maxima have the same magnit
the consistent pattern suggests that oscillations at the buoyancy frequency are a don
feature of the energetics of the flow.

The work input of kinetic energy achieves a fairly steady value of abeut@“. Oscil-
lations in work input begin at aboyt ~ 70) and may be attributed to the superposition o
incoming and outgoing energy, modulating the local velocity field in the forcing region &
hence the work input, which is the product of the local velocity and forcing terms (3.7
This does not, however, change the amplitude of the downward directed wave train.

The balance of kinetic energy is very god8l éndW are indistinguishable in Fig. 20);
typically the errors are less than 1%. This small error may also be attributed to diffe
integration techniques. A simple method of integration was used for the energy rate te
based upon summation of the grid values for the velocities, weighted by the local volurr
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the variable grid. It was found later that the use of a more sophisticated numerical integrz
method, such as the trapezoidal or Simpson’s rule, could also alter some of the integra
approximately 1%. The general conclusion is that the energy balance is very good, an
individual terms are representative of the energetics in the fluid.

The dissipation rates in Fig. 20 appear as negative quantities, meaning a loss of ki
or total energy. The loss of kinetic energy by the compact filter subgrid-scale model
been separated from the resolved dissipation. Comparison of these magnitudes show
most of the dissipation has been resolved. Time integration of the losses of energy sl
that, on a 12% 65 x 130 grid, 92% of the kinetic energy dissipation has occurred throu
€ at well resolved scales and 8% of the kinetic energy dissipation has been accompli
by the subgrid-scale filter.

Figure 21 plots gray scale contours of the dissipation Reynolds nuiRkes € /vN?,
in the same three planes as Fig. 1% at55. The main point of the figure is that nearly
all of the dissipation occurs in the turbulent boundary layer, in an inhomogeneous fast
Ivey and Nokes (1989) have usBey to predict transition to turbulence. They suggest the
for Rey=¢/vN? > 10 there may be a universal transition point for stratified turbulenc
The streaks nearest the wall, seen in the top frame of Fig. 21, Rayve 500, while
the core of the turbulent bore has regions wi ~ 100. The bottom two frames of
Fig. 21, illustrating a top view and an end view, show the three-dimensional structure of
turbulence. While the average values of the dissipation rate are somewhat uniforng-n tf
direction, the contours of dissipation rate are comprised of strong streaks indicative of |
variability.

The strongest dissipation occurs in the viscous sublayek f00.01\,. Horizontally
averaged dissipation rates are plotted as a functianiofFig. 22. Vertical integration of
the dissipation rates indicate that approximately 40% of the total wave energy dissipe
occurs in the viscous layer near the wall (39% at well resolved length scales and 1% |
the filter) for this flow atRE=1000. At higher Reynolds numbers the contribution to th
total dissipation rate from the viscous layer decreases significantly while remaining \
resolved, for example, &e= 2000 the contribution to the total dissiption rate from the
viscous layer is approximately 20% (19% resolved, 1% filter). The spatial inhomogeneit
the flow makesit difficult to determine the appropriate average dissipation rate for estime
a totalRe for the turbulent boundary layer. éfis averaged just in the core of the turbulen
bore, thenRe ~ 30. If, however is spatially averaged across the boundary layer, to
height ofz=1,/4 thenReg ~ 7.

Finally, results from releasing a passive “dye” in the near wall region are shown
Fig. 23. The initial concentratior§;, att =0, of the dye near the boundaryGs= 1.0 for
z < 0.15),, falling off between (L54; <z < 0.3%,, andC =0 for z > 0.31,. As mixing
occurs in the turbulent layer the concentration of dye near the wall decreases. Contour |
of 0 < C < 0.5 are plotted in Fig. 23 at=0, 76, and 144. A horizontal intrusion of dye is
observed to steadily work its way into the interior domain, approximately following surfac
of constant density. At =144 two distinct horizontal dye layers are evident located
zr ~0.51, andzr ~ 0.8A,. Thus byt = 144, approximately nine wave periods after mixing
begins, the dye is present in a layer approximately twice as thick as when initially relea
The important point revealed by the motion of the dye is that there is a slow circulation dri
by buoyancy forces as fluid is mixed in the boundary layer. We conclude that the net eff
of boundary mixing are not confined to the boundary layer region but are communic:
horizontally to the interior stratified fluid.
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FIG. 21. Kinetic energy dissipation rate normalized b\? in these planes dt=55: thex-z plane located

by y=0.3%, (top), thex-y plane parallel to the bottom slope at a heighkt0.103\,, and they-z plane located at
x =0.577x, (bottom).

Results from the 30critical angle experiment have provided an example of how tt
model performs for the internal wave reflection problem at a moderate Reynolds nun
We have observed that the oncoming waves transition to turbulence in a boundary lay
approximate thickness,/3 as it reflects from the bottom wall. The turbulence is localize
and moves upslope at tikecomponent of the phase speed of the oncoming wave. A qué
steady flow develops in which the oncoming wave energy is dissipated near the wall w
mixing the fluid in the boundary layer.
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FIG. 22. Average kinetic energy dissipation ratéz) at different times for the same experiment shown in
Figs. 16-21 for critically reflecting internal waves with a bottom slope of 30

5. SUMMARY

We have presented a new three-dimensional Navier—Stokes solver for direct nume
and large eddy simulations of a turbulent boundary layer in a stratified fluid subject to
Boussinesq approximation. The model was designed to study the problem of internal \
reflection from sloping boundaries that can result in wave breakdown into a turbulent bot
ary layer. Internal waves are generated by a new method that forces moderate amp
monochromatic oncoming waves at specified wavelengths and frequencies. An ang
solutionhas been presented for the wave forcing mechanism that predicts properties «
resulting forced wave. It was found that the vertical extent of the forcing region should
greater than or equal to the vertical wavelength of the desired monochromatic wave tra
yield satisfactory results.

The model is periodic in two dimensions and in the third dimension employs a w:
absorbing layer at the upper surface and a solid sloping surface at the bottom boundarn
equations of fluid motion are solved in a rotated coordinate system aligned with the slo
bottom topography. Boundary currents that arise in a stratified fluid over slopes (Phill
1970) balancing mass diffusion with upslope convection have been included in the m
initialization.

The combination of numerical techniques in the model make it generally robust
well suited for application to boundary layer and other wave propagation problems.
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FIG. 23. Dye field concentrations &t=1, 76, and 144.

time discretization scheme is a third-order Adams—Bashforth realization of the projec
method. Greater efficiency is introduced by using a variable time-stepping scheme
allows the time step to be adjusted, based upon results from the combined tempora
spatial numerical stability analysis. The spatial discretization in the model uses com
finite differencing techniques (Lele, 1992), which have near spectral accuracy in their ak
to resolve a wide range of wavenumbers with minimal phase errors. A variable-mesh g
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used to cluster computational nodes near the physical boundary at the sea bed. The ve
grid is mapped onto a uniform grid in computational space by an algebraic relations
Calculations on grids of up to 129129x 130 (~2.1 million) points have been conducted,
and the model achieves significant efficiencies through vectorization and parallelization.
pressure field is determined to fourth-order accuracy by taking advantage of the periodic
inthe problem and by decoupling the directional dependencies of the pressure field in Fo
wave number space to allow gains from both vectorization and direct matrix inversior
the pressure coefficients.

In the gravity wave reflection flow, the main interactions that occur are at large scales
can be well resolved. Numerical experiments have been conducted at Reynolds nur
500< Re< 5,000. For the majority of the experiments, at a moderately low Reynolds nt
ber (e.g.Re< 2500), the model represents a direct numerical simulation of the bound
layer. At a higher Reynolds number attention is focused on the large scales of motions
the manner in which energy is transferred to the intermediate-scale motions; phenome
smaller, dissipative scales are parameterized. For approxinieely2500 the model may
be considered a large eddy simulation (LES) of the flow, with an additional hypervisco
filter (V4u) used to dissipate excess energy from the subgrid scales of motion.

The utility of the model has been examined in a number of simplified test problems as:
as for internal wave reflection from sloping topography. Results of numerical simulati
have shown good agreement with theory and laboratory studies. New insights into
physics of the gravity wave reflection problem have been revealed through these nume
simulations. The model is generally robust and the combination of numerical techniqu
employs make it well suited for application to boundary layer problems.

APPENDIX A: ANALYTIC SOLUTION FOR FORCING

In Subsection 2.4 the forced response for a numerical solution was determined fol
equations

2 2
’f”(Z) + 4m2A/f (2 = —A F"(z2) + M F'(2) (A1)
wk wk
"(2) + 4m?B} (2) = @(kz +mE @) (A2)
w

for F(2) = exp[-b(z — z)?]. Here we present an analytic solution B¢ and A; when
F(z) =sir? (z) on the interval O< z < 7. Three boundary conditions d (z) are used:
atz=0, Bf =0andB} =0, and az=r, B =0. The same boundary conditions are use
for Af(2). The solutions are

AR+ K-
_4Am , o, —sirf(mm) sin(mr) cog2m2)
Br(2) = wk (k" +m 8m3sin2mn)(1 —m?2)  8m2sin(2msx)(1 — m?2)
sin(2m2) z sin(2z2)

C16m3(1—m2) ' 8m2 | 16(1—m?) | (A4)

At, B¢, andF are plotted in Fig. 24 for two different values 8f k, m, andw. Here the
forced wave propagates upward, to increasing values of
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FIG. 24. Shape functions forA; and B¢, from (A3) and (A4) with parameter&\=0.15 k=1.80,m
=3.33, w=0.474 (top); andA = 0.08, k = 0.90, m= 1.43, » = 0.532 (top).

The resulting shape functidB; is not sensitive to the rati%/LF in the same manner
as were the results fdf (z) = exp[—b(z — z9)?]. Here the results are sufficiently smooth
outside the forcing region so long as i? does not approach zero at which value the solutic
contains a singularity. The sensitivity Bf (z) on %”/ L ¢ for F(2) = exp[-b(z— z0)?] may
be caused by the frequency content of exip{z — z)?] which contains an infinite series
of sine waves each containing singularities at different values. of

We note, however, that fd¥ (z) = sir? (2), the resulting shape &; responds differently
within the forcing region when eith&f. — m?) or (24 k? — m?) change sign, which causes
At to change sign also. For the case whenand B¢ are of opposite sign (top panel of
Fig. 24) the forced waves grow continuously. Whepand B¢ are both positive (bottom
panel)B; decreases in the center of the forcing region.

APPENDIX B: COMPACT FILTERING ON VARIABLE GRID

It was shown in Subsection 3.2 that the filtered field can be obtained on the uniform
by (3.14)

0.40; _1 + U; + 0.40i,1 = 0.4u;_1 + uj + 0.4u; 4

1
- %(Uwz — AU 41 + 6U; — 4Ui_1 + Ui_), (B1)
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which is equivalent to writing

. . . 1 3%u
0.4U;_1 + Ui + 0.40; 11 = 0.4u;_1 + u; + 0.4uj 1 — : (AX)* | - (B2)

In the discussion on grid metrics in Subsection 3.5 the equivalent expression for the fc
derivative is given by (3.52)

84 3

Sy (4)3;4 +6r? (E)Fz(é’) Uy [Ary©)Ts(o) + 33 2

o7 +F4(§)— (B3)

92

wherel';—-T'4 are given above in Subsection 3.6. Combining Egs. (B2) and (B3) yields
fourth-order compact filter on the clustered grid

0.40;_1 + Uj + 0.40i,1 = 0.4u;_1 + uj + 0.4u;

—(Ui+2 —4Uj11 4 6U; —4Ui_1 + Ui_2)

§ 6F2 Uit2 — 2Ui41 + 2Ui—1 — Uj_2
80 i 2

A? 4r3 3rs
go \r3 ' 4

AL3 (T4 Uiy1 — Ui
‘E(r—f)i(iz )’ (B4)
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